|
|
@ -48,8 +48,6 @@ void computeIMU(void) |
|
|
|
static uint32_t timeInterleave = 0; |
|
|
|
static int16_t gyroYawSmooth = 0; |
|
|
|
|
|
|
|
#define GYRO_INTERLEAVE |
|
|
|
|
|
|
|
if (sensors(SENSOR_ACC)) { |
|
|
|
ACC_getADC(); |
|
|
|
getEstimatedAttitude(); |
|
|
@ -57,18 +55,11 @@ void computeIMU(void) |
|
|
|
|
|
|
|
Gyro_getADC(); |
|
|
|
|
|
|
|
for (axis = 0; axis < 3; axis++) { |
|
|
|
#ifdef GYRO_INTERLEAVE |
|
|
|
for (axis = 0; axis < 3; axis++) |
|
|
|
gyroADCp[axis] = gyroADC[axis]; |
|
|
|
#else |
|
|
|
gyroData[axis] = gyroADC[axis]; |
|
|
|
#endif |
|
|
|
if (!sensors(SENSOR_ACC)) |
|
|
|
accADC[axis] = 0; |
|
|
|
} |
|
|
|
timeInterleave = micros(); |
|
|
|
annexCode(); |
|
|
|
#ifdef GYRO_INTERLEAVE |
|
|
|
|
|
|
|
if ((micros() - timeInterleave) > 650) { |
|
|
|
annex650_overrun_count++; |
|
|
|
} else { |
|
|
@ -84,7 +75,6 @@ void computeIMU(void) |
|
|
|
if (!sensors(SENSOR_ACC)) |
|
|
|
accADC[axis] = 0; |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
if (feature(FEATURE_GYRO_SMOOTHING)) { |
|
|
|
static uint8_t Smoothing[3] = { 0, 0, 0 }; |
|
|
@ -128,12 +118,6 @@ void computeIMU(void) |
|
|
|
|
|
|
|
//****** advanced users settings ******************* |
|
|
|
|
|
|
|
/* Set the Low Pass Filter factor for Magnetometer */ |
|
|
|
/* Increasing this value would reduce Magnetometer noise (not visible in GUI), but would increase Magnetometer lag time*/ |
|
|
|
/* Comment this if you do not want filter at all.*/ |
|
|
|
/* Default WMC value: n/a*/ |
|
|
|
//#define MG_LPF_FACTOR 4 |
|
|
|
|
|
|
|
/* Set the Gyro Weight for Gyro/Magnetometer complementary filter */ |
|
|
|
/* Increasing this value would reduce and delay Magnetometer influence on the output of the filter*/ |
|
|
|
/* Default WMC value: n/a*/ |
|
|
@ -142,7 +126,7 @@ void computeIMU(void) |
|
|
|
//****** end of advanced users settings ************* |
|
|
|
|
|
|
|
#define INV_GYR_CMPF_FACTOR (1.0f / ((float)mcfg.gyro_cmpf_factor + 1.0f)) |
|
|
|
#define INV_GYR_CMPFM_FACTOR (1.0f / (GYR_CMPFM_FACTOR + 1.0f)) |
|
|
|
#define INV_GYR_CMPFM_FACTOR (1.0f / ((float)mcfg.gyro_cmpfm_factor + 1.0f)) |
|
|
|
|
|
|
|
// #define GYRO_SCALE ((1998 * M_PI)/((32767.0f / 4.0f ) * 180.0f * 1000000.0f)) // 32767 / 16.4lsb/dps for MPU3000 |
|
|
|
|
|
|
@ -164,11 +148,6 @@ void rotateV(struct fp_vector *v, float *delta) |
|
|
|
{ |
|
|
|
struct fp_vector v_tmp = *v; |
|
|
|
|
|
|
|
#if INACCURATE |
|
|
|
v->Z -= delta[ROLL] * v_tmp.X + delta[PITCH] * v_tmp.Y; |
|
|
|
v->X += delta[ROLL] * v_tmp.Z - delta[YAW] * v_tmp.Y; |
|
|
|
v->Y += delta[PITCH] * v_tmp.Z + delta[YAW] * v_tmp.X; |
|
|
|
#else |
|
|
|
// This does a "proper" matrix rotation using gyro deltas without small-angle approximation |
|
|
|
float mat[3][3]; |
|
|
|
float cosx, sinx, cosy, siny, cosz, sinz; |
|
|
@ -200,7 +179,6 @@ void rotateV(struct fp_vector *v, float *delta) |
|
|
|
v->X = v_tmp.X * mat[0][0] + v_tmp.Y * mat[1][0] + v_tmp.Z * mat[2][0]; |
|
|
|
v->Y = v_tmp.X * mat[0][1] + v_tmp.Y * mat[1][1] + v_tmp.Z * mat[2][1]; |
|
|
|
v->Z = v_tmp.X * mat[0][2] + v_tmp.Y * mat[1][2] + v_tmp.Z * mat[2][2]; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
static int16_t _atan2f(float y, float x) |
|
|
@ -209,18 +187,26 @@ static int16_t _atan2f(float y, float x) |
|
|
|
return (int16_t)(atan2f(y, x) * (180.0f / M_PI * 10.0f)); |
|
|
|
} |
|
|
|
|
|
|
|
// Use original baseflight angle calculation |
|
|
|
// #define BASEFLIGHT_CALC |
|
|
|
static float invG; |
|
|
|
|
|
|
|
static void getEstimatedAttitude(void) |
|
|
|
{ |
|
|
|
uint32_t axis; |
|
|
|
int32_t accMag = 0; |
|
|
|
static t_fp_vector EstM; |
|
|
|
#if defined(MG_LPF_FACTOR) |
|
|
|
static int16_t mgSmooth[3]; |
|
|
|
#endif |
|
|
|
static float accLPF[3]; |
|
|
|
static uint32_t previousT; |
|
|
|
uint32_t currentT = micros(); |
|
|
|
float scale, deltaGyroAngle[3]; |
|
|
|
#ifndef BASEFLIGHT_CALC |
|
|
|
float sqGZ; |
|
|
|
float sqGX; |
|
|
|
float sqGY; |
|
|
|
float sqGX_sqGZ; |
|
|
|
float invmagXZ; |
|
|
|
#endif |
|
|
|
|
|
|
|
scale = (currentT - previousT) * gyro.scale; |
|
|
|
previousT = currentT; |
|
|
@ -236,15 +222,6 @@ static void getEstimatedAttitude(void) |
|
|
|
} |
|
|
|
accLPFVel[axis] = accLPFVel[axis] * (1.0f - (1.0f / cfg.acc_lpf_for_velocity)) + accADC[axis] * (1.0f / cfg.acc_lpf_for_velocity); |
|
|
|
accMag += (int32_t)accSmooth[axis] * accSmooth[axis]; |
|
|
|
|
|
|
|
if (sensors(SENSOR_MAG)) { |
|
|
|
#if defined(MG_LPF_FACTOR) |
|
|
|
mgSmooth[axis] = (mgSmooth[axis] * (MG_LPF_FACTOR - 1) + magADC[axis]) / MG_LPF_FACTOR; // LPF for Magnetometer values |
|
|
|
#define MAG_VALUE mgSmooth[axis] |
|
|
|
#else |
|
|
|
#define MAG_VALUE magADC[axis] |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
accMag = accMag * 100 / ((int32_t)acc_1G * acc_1G); |
|
|
|
|
|
|
@ -258,35 +235,39 @@ static void getEstimatedAttitude(void) |
|
|
|
f.SMALL_ANGLES_25 = 0; |
|
|
|
|
|
|
|
// Apply complimentary filter (Gyro drift correction) |
|
|
|
// If accel magnitude >1.4G or <0.6G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation. |
|
|
|
// If accel magnitude >1.15G or <0.85G and ACC vector outside of the limit range => we neutralize the effect of accelerometers in the angle estimation. |
|
|
|
// To do that, we just skip filter, as EstV already rotated by Gyro |
|
|
|
if ((36 < accMag && accMag < 196) || f.SMALL_ANGLES_25) { |
|
|
|
if (72 < accMag && accMag < 133) { |
|
|
|
for (axis = 0; axis < 3; axis++) |
|
|
|
EstG.A[axis] = (EstG.A[axis] * (float)mcfg.gyro_cmpf_factor + accSmooth[axis]) * INV_GYR_CMPF_FACTOR; |
|
|
|
} |
|
|
|
|
|
|
|
if (sensors(SENSOR_MAG)) { |
|
|
|
for (axis = 0; axis < 3; axis++) |
|
|
|
EstM.A[axis] = (EstM.A[axis] * GYR_CMPFM_FACTOR + MAG_VALUE) * INV_GYR_CMPFM_FACTOR; |
|
|
|
EstM.A[axis] = (EstM.A[axis] * (float)mcfg.gyro_cmpfm_factor + magADC[axis]) * INV_GYR_CMPFM_FACTOR; |
|
|
|
} |
|
|
|
|
|
|
|
// Attitude of the estimated vector |
|
|
|
#if INACCURATE |
|
|
|
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z); |
|
|
|
angle[PITCH] = _atan2f(EstG.V.Y, EstG.V.Z); |
|
|
|
#else |
|
|
|
#ifdef BASEFLIGHT_CALC |
|
|
|
// This hack removes gimbal lock (sorta) on pitch, so rolling around doesn't make pitch jump when roll reaches 90deg |
|
|
|
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z); |
|
|
|
angle[PITCH] = -asinf(EstG.V.Y / -sqrtf(EstG.V.X * EstG.V.X + EstG.V.Y * EstG.V.Y + EstG.V.Z * EstG.V.Z)) * (180.0f / M_PI * 10.0f); |
|
|
|
#else |
|
|
|
// MW2.2 version |
|
|
|
sqGZ = EstG.V.Z * EstG.V.Z; |
|
|
|
sqGX = EstG.V.X * EstG.V.X; |
|
|
|
sqGY = EstG.V.Y * EstG.V.Y; |
|
|
|
sqGX_sqGZ = sqGX + sqGZ; |
|
|
|
invmagXZ = 1.0f / sqrtf(sqGX_sqGZ); |
|
|
|
invG = 1.0f / sqrtf(sqGX_sqGZ + sqGY); |
|
|
|
angle[ROLL] = _atan2f(EstG.V.X, EstG.V.Z); |
|
|
|
angle[PITCH] = _atan2f(EstG.V.Y, invmagXZ * sqGX_sqGZ); |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifdef MAG |
|
|
|
if (sensors(SENSOR_MAG)) { |
|
|
|
#if INACCURATE |
|
|
|
heading = _atan2f(EstG.V.X * EstM.V.Z - EstG.V.Z * EstM.V.X, EstG.V.Z * EstM.V.Y - EstG.V.Y * EstM.V.Z); |
|
|
|
heading = heading + magneticDeclination; |
|
|
|
heading = heading / 10; |
|
|
|
#else |
|
|
|
#ifdef BASEFLIGHT_CALC |
|
|
|
// baseflight calculation |
|
|
|
float rollRAD = (float)angle[ROLL] * RADX10; |
|
|
|
float pitchRAD = -(float)angle[PITCH] * RADX10; |
|
|
|
float magX = EstM.A[1]; // Swap X/Y |
|
|
@ -300,6 +281,11 @@ static void getEstimatedAttitude(void) |
|
|
|
float Yh = magY * cr - magZ * sr; |
|
|
|
float hd = (atan2f(-Yh, Xh) * 1800.0f / M_PI + magneticDeclination) / 10.0f; |
|
|
|
heading = hd; |
|
|
|
#else |
|
|
|
// MW 2.2 calculation |
|
|
|
heading = _atan2f(EstM.V.Z * EstG.V.X - EstM.V.X * EstG.V.Z, EstM.V.Y * invG * sqGX_sqGZ - (EstM.V.X * EstG.V.X + EstM.V.Z * EstG.V.Z) * invG * EstG.V.Y); |
|
|
|
heading = heading + magneticDeclination; |
|
|
|
heading = heading / 10; |
|
|
|
#endif |
|
|
|
if (heading > 180) |
|
|
|
heading = heading - 360; |
|
|
@ -313,7 +299,7 @@ static void getEstimatedAttitude(void) |
|
|
|
#define UPDATE_INTERVAL 25000 // 40hz update rate (20hz LPF on acc) |
|
|
|
#define INIT_DELAY 4000000 // 4 sec initialization delay |
|
|
|
|
|
|
|
int16_t applyDeadband16(int16_t value, int16_t deadband) |
|
|
|
int16_t applyDeadband(int16_t value, int16_t deadband) |
|
|
|
{ |
|
|
|
if (abs(value) < deadband) { |
|
|
|
value = 0; |
|
|
@ -325,54 +311,16 @@ int16_t applyDeadband16(int16_t value, int16_t deadband) |
|
|
|
return value; |
|
|
|
} |
|
|
|
|
|
|
|
float applyDeadbandFloat(float value, int16_t deadband) |
|
|
|
{ |
|
|
|
if (abs(value) < deadband) { |
|
|
|
value = 0; |
|
|
|
} else if (value > 0) { |
|
|
|
value -= deadband; |
|
|
|
} else if (value < 0) { |
|
|
|
value += deadband; |
|
|
|
} |
|
|
|
return value; |
|
|
|
} |
|
|
|
|
|
|
|
float InvSqrt(float x) |
|
|
|
{ |
|
|
|
union { |
|
|
|
int32_t i; |
|
|
|
float f; |
|
|
|
} conv; |
|
|
|
conv.f = x; |
|
|
|
conv.i = 0x5f3759df - (conv.i >> 1); |
|
|
|
return 0.5f * conv.f * (3.0f - x * conv.f * conv.f); |
|
|
|
} |
|
|
|
|
|
|
|
int32_t isq(int32_t x) |
|
|
|
{ |
|
|
|
return x * x; |
|
|
|
} |
|
|
|
|
|
|
|
#define applyDeadband(value, deadband) \ |
|
|
|
if(abs(value) < deadband) { \ |
|
|
|
value = 0; \ |
|
|
|
} else if(value > 0){ \ |
|
|
|
value -= deadband; \ |
|
|
|
} else if(value < 0){ \ |
|
|
|
value += deadband; \ |
|
|
|
} |
|
|
|
|
|
|
|
int getEstimatedAltitude(void) |
|
|
|
{ |
|
|
|
static int32_t baroGroundPressure; |
|
|
|
static uint16_t previousT; |
|
|
|
uint16_t currentT = micros(); |
|
|
|
uint16_t dTime; |
|
|
|
float invG; |
|
|
|
static uint32_t previousT; |
|
|
|
uint32_t currentT = micros(); |
|
|
|
uint32_t dTime; |
|
|
|
int16_t error16; |
|
|
|
int16_t baroVel; |
|
|
|
int16_t accZ; |
|
|
|
static int16_t accZoffset = 0; // = acc_1G*6; //58 bytes saved and convergence is fast enough to omit init |
|
|
|
static int16_t accZoffset = 0; |
|
|
|
static float vel = 0.0f; |
|
|
|
static int32_t lastBaroAlt; |
|
|
|
int16_t vel_tmp; |
|
|
@ -390,12 +338,12 @@ int getEstimatedAltitude(void) |
|
|
|
// pressure relative to ground pressure with temperature compensation (fast!) |
|
|
|
// baroGroundPressure is not supposed to be 0 here |
|
|
|
// see: https://code.google.com/p/ardupilot-mega/source/browse/libraries/AP_Baro/AP_Baro.cpp |
|
|
|
BaroAlt = log(baroGroundPressure * (cfg.baro_tab_size - 1) / (float)baroPressureSum) * (baroTemperature + 27315) * 29.271267f; // in cemtimeter |
|
|
|
BaroAlt = logf(baroGroundPressure * (cfg.baro_tab_size - 1) / (float)baroPressureSum) * (baroTemperature + 27315) * 29.271267f; // in cemtimeter |
|
|
|
EstAlt = (EstAlt * 6 + BaroAlt * 2) >> 3; // additional LPF to reduce baro noise |
|
|
|
|
|
|
|
//P |
|
|
|
error16 = constrain(AltHold - EstAlt, -300, 300); |
|
|
|
applyDeadband(error16, 10); // remove small P parametr to reduce noise near zero position |
|
|
|
error16 = applyDeadband(error16, 10); // remove small P parametr to reduce noise near zero position |
|
|
|
BaroPID = constrain((cfg.P8[PIDALT] * error16 >> 7), -150, +150); |
|
|
|
|
|
|
|
//I |
|
|
@ -404,8 +352,7 @@ int getEstimatedAltitude(void) |
|
|
|
BaroPID += errorAltitudeI >> 9; // I in range +/-60 |
|
|
|
|
|
|
|
// projection of ACC vector to global Z, with 1G subtructed |
|
|
|
// Math: accZ = A * G / |G| - 1G |
|
|
|
invG = InvSqrt(isq(EstG.V.X) + isq(EstG.V.Y) + isq(EstG.V.Z)); |
|
|
|
// Math: accZ = A * G / |G| - 1G (invG is calculated in getEstimatedAttitude) |
|
|
|
accZ = (accSmooth[ROLL] * EstG.V.X + accSmooth[PITCH] * EstG.V.Y + accSmooth[YAW] * EstG.V.Z) * invG; |
|
|
|
|
|
|
|
if (!f.ARMED) { |
|
|
@ -413,7 +360,7 @@ int getEstimatedAltitude(void) |
|
|
|
accZoffset += accZ; |
|
|
|
} |
|
|
|
accZ -= accZoffset >> 3; |
|
|
|
applyDeadband(accZ, cfg.accz_deadband); |
|
|
|
accZ = applyDeadband(accZ, cfg.accz_deadband); |
|
|
|
|
|
|
|
// Integrator - velocity, cm/sec |
|
|
|
vel += accZ * accVelScale * dTime; |
|
|
@ -422,7 +369,7 @@ int getEstimatedAltitude(void) |
|
|
|
lastBaroAlt = EstAlt; |
|
|
|
|
|
|
|
baroVel = constrain(baroVel, -300, 300); // constrain baro velocity +/- 300cm/s |
|
|
|
applyDeadband(baroVel, 10); // to reduce noise near zero |
|
|
|
baroVel = applyDeadband(baroVel, 10); // to reduce noise near zero |
|
|
|
|
|
|
|
// apply Complimentary Filter to keep the calculated velocity based on baro velocity (i.e. near real velocity). |
|
|
|
// By using CF it's possible to correct the drift of integrated accZ (velocity) without loosing the phase, i.e without delay |
|
|
@ -430,7 +377,7 @@ int getEstimatedAltitude(void) |
|
|
|
|
|
|
|
// D |
|
|
|
vel_tmp = vel; |
|
|
|
applyDeadband(vel_tmp, 5); |
|
|
|
vel_tmp = applyDeadband(vel_tmp, 5); |
|
|
|
vario = vel_tmp; |
|
|
|
BaroPID -= constrain(cfg.D8[PIDALT] * vel_tmp >> 4, -150, 150); |
|
|
|
|
|
|
|