Martin Budden
7 years ago
2600 changed files with 2587766 additions and 0 deletions
-
165lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_abs_f32.c
-
179lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_abs_q15.c
-
130lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_abs_q31.c
-
157lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_abs_q7.c
-
150lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_add_f32.c
-
140lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_add_q15.c
-
148lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_add_q31.c
-
134lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_add_q7.c
-
135lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_dot_prod_f32.c
-
140lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_dot_prod_q15.c
-
143lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_dot_prod_q31.c
-
159lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_dot_prod_q7.c
-
174lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_mult_f32.c
-
154lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_mult_q15.c
-
160lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_mult_q31.c
-
127lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_mult_q7.c
-
146lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_negate_f32.c
-
142lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_negate_q15.c
-
129lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_negate_q31.c
-
125lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_negate_q7.c
-
165lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_offset_f32.c
-
136lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_offset_q15.c
-
140lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_offset_q31.c
-
135lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_offset_q7.c
-
169lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_scale_f32.c
-
162lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_scale_q15.c
-
239lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_scale_q31.c
-
149lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_scale_q7.c
-
248lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_shift_q15.c
-
203lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_shift_q31.c
-
220lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_shift_q7.c
-
150lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_sub_f32.c
-
140lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_sub_q15.c
-
146lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_sub_q31.c
-
131lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/BasicMathFunctions/arm_sub_q7.c
-
27251lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/CommonTables/arm_common_tables.c
-
156lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/CommonTables/arm_const_structs.c
-
182lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_conj_f32.c
-
161lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_conj_q15.c
-
180lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_conj_q31.c
-
203lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_dot_prod_f32.c
-
189lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_dot_prod_q15.c
-
187lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_dot_prod_q31.c
-
165lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_f32.c
-
153lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_q15.c
-
185lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_q31.c
-
215lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_squared_f32.c
-
148lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_squared_q15.c
-
161lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mag_squared_q31.c
-
207lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_cmplx_f32.c
-
193lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_cmplx_q15.c
-
326lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_cmplx_q31.c
-
225lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_real_f32.c
-
203lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_real_q15.c
-
223lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ComplexMathFunctions/arm_cmplx_mult_real_q31.c
-
87lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_init_f32.c
-
122lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_init_q15.c
-
107lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_init_q31.c
-
65lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_reset_f32.c
-
64lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_reset_q15.c
-
65lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_pid_reset_q31.c
-
149lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_sin_cos_f32.c
-
122lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/ControllerFunctions/arm_sin_cos_q31.c
-
127lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_cos_f32.c
-
96lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_cos_q15.c
-
96lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_cos_q31.c
-
133lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_sin_f32.c
-
88lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_sin_q15.c
-
87lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_sin_q31.c
-
155lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_sqrt_q15.c
-
153lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FastMathFunctions/arm_sqrt_q31.c
-
110lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_init_q31.c
-
561lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_32x64_q31.c
-
425lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_f32.c
-
286lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q15.c
-
305lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_fast_q31.c
-
109lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_init_f32.c
-
111lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q15.c
-
111lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_init_q31.c
-
411lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q15.c
-
405lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df1_q31.c
-
603lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df2T_f32.c
-
603lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df2T_f64.c
-
102lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f32.c
-
102lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_df2T_init_f64.c
-
683lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_f32.c
-
102lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_biquad_cascade_stereo_df2T_init_f32.c
-
647lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_f32.c
-
543lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_fast_opt_q15.c
-
1410lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_fast_q15.c
-
577lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_fast_q31.c
-
545lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_opt_q15.c
-
435lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_opt_q7.c
-
669lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_f32.c
-
768lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_fast_opt_q15.c
-
1492lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_fast_q15.c
-
611lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_fast_q31.c
-
765lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_opt_q15.c
-
803lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_opt_q7.c
-
786lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_q15.c
@ -0,0 +1,165 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_abs_f32.c |
|||
* |
|||
* Description: Vector absolute value. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
#include <math.h> |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup BasicAbs Vector Absolute Value |
|||
* |
|||
* Computes the absolute value of a vector on an element-by-element basis. |
|||
* |
|||
* <pre> |
|||
* pDst[n] = abs(pSrc[n]), 0 <= n < blockSize. |
|||
* </pre> |
|||
* |
|||
* The functions support in-place computation allowing the source and |
|||
* destination pointers to reference the same memory buffer. |
|||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicAbs |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Floating-point vector absolute value. |
|||
* @param[in] *pSrc points to the input buffer |
|||
* @param[out] *pDst points to the output buffer |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_abs_f32( |
|||
float32_t * pSrc, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t in1, in2, in3, in4; /* temporary variables */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = |A| */ |
|||
/* Calculate absolute and then store the results in the destination buffer. */ |
|||
/* read sample from source */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
in3 = *(pSrc + 2); |
|||
|
|||
/* find absolute value */ |
|||
in1 = fabsf(in1); |
|||
|
|||
/* read sample from source */ |
|||
in4 = *(pSrc + 3); |
|||
|
|||
/* find absolute value */ |
|||
in2 = fabsf(in2); |
|||
|
|||
/* read sample from source */ |
|||
*pDst = in1; |
|||
|
|||
/* find absolute value */ |
|||
in3 = fabsf(in3); |
|||
|
|||
/* find absolute value */ |
|||
in4 = fabsf(in4); |
|||
|
|||
/* store result to destination */ |
|||
*(pDst + 1) = in2; |
|||
|
|||
/* store result to destination */ |
|||
*(pDst + 2) = in3; |
|||
|
|||
/* store result to destination */ |
|||
*(pDst + 3) = in4; |
|||
|
|||
|
|||
/* Update source pointer to process next sampels */ |
|||
pSrc += 4u; |
|||
|
|||
/* Update destination pointer to process next sampels */ |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = |A| */ |
|||
/* Calculate absolute and then store the results in the destination buffer. */ |
|||
*pDst++ = fabsf(*pSrc++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicAbs group |
|||
*/ |
@ -0,0 +1,179 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_abs_q15.c |
|||
* |
|||
* Description: Q15 vector absolute value. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicAbs |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q15 vector absolute value. |
|||
* @param[in] *pSrc points to the input buffer |
|||
* @param[out] *pDst points to the output buffer |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF. |
|||
*/ |
|||
|
|||
void arm_abs_q15( |
|||
q15_t * pSrc, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
__SIMD32_TYPE *simd; |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
q15_t in1; /* Input value1 */ |
|||
q15_t in2; /* Input value2 */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
simd = __SIMD32_CONST(pDst); |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = |A| */ |
|||
/* Read two inputs */ |
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
|
|||
|
|||
/* Store the Absolute result in the destination buffer by packing the two values, in a single cycle */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
*simd++ = |
|||
__PKHBT(((in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1)), |
|||
((in2 > 0) ? in2 : (q15_t)__QSUB16(0, in2)), 16); |
|||
|
|||
#else |
|||
|
|||
|
|||
*simd++ = |
|||
__PKHBT(((in2 > 0) ? in2 : (q15_t)__QSUB16(0, in2)), |
|||
((in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1)), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
|
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*simd++ = |
|||
__PKHBT(((in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1)), |
|||
((in2 > 0) ? in2 : (q15_t)__QSUB16(0, in2)), 16); |
|||
|
|||
#else |
|||
|
|||
|
|||
*simd++ = |
|||
__PKHBT(((in2 > 0) ? in2 : (q15_t)__QSUB16(0, in2)), |
|||
((in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1)), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
pDst = (q15_t *)simd; |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = |A| */ |
|||
/* Read the input */ |
|||
in1 = *pSrc++; |
|||
|
|||
/* Calculate absolute value of input and then store the result in the destination buffer. */ |
|||
*pDst++ = (in1 > 0) ? in1 : (q15_t)__QSUB16(0, in1); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
q15_t in; /* Temporary input variable */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = |A| */ |
|||
/* Read the input */ |
|||
in = *pSrc++; |
|||
|
|||
/* Calculate absolute value of input and then store the result in the destination buffer. */ |
|||
*pDst++ = (in > 0) ? in : ((in == (q15_t) 0x8000) ? 0x7fff : -in); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicAbs group |
|||
*/ |
@ -0,0 +1,130 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_abs_q31.c |
|||
* |
|||
* Description: Q31 vector absolute value. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicAbs |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Q31 vector absolute value. |
|||
* @param[in] *pSrc points to the input buffer |
|||
* @param[out] *pDst points to the output buffer |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF. |
|||
*/ |
|||
|
|||
void arm_abs_q31( |
|||
q31_t * pSrc, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
q31_t in; /* Input value */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t in1, in2, in3, in4; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = |A| */ |
|||
/* Calculate absolute of input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */ |
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
in3 = *pSrc++; |
|||
in4 = *pSrc++; |
|||
|
|||
*pDst++ = (in1 > 0) ? in1 : (q31_t)__QSUB(0, in1); |
|||
*pDst++ = (in2 > 0) ? in2 : (q31_t)__QSUB(0, in2); |
|||
*pDst++ = (in3 > 0) ? in3 : (q31_t)__QSUB(0, in3); |
|||
*pDst++ = (in4 > 0) ? in4 : (q31_t)__QSUB(0, in4); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = |A| */ |
|||
/* Calculate absolute value of the input (if -1 then saturated to 0x7fffffff) and then store the results in the destination buffer. */ |
|||
in = *pSrc++; |
|||
*pDst++ = (in > 0) ? in : ((in == INT32_MIN) ? INT32_MAX : -in); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicAbs group |
|||
*/ |
@ -0,0 +1,157 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_abs_q7.c |
|||
* |
|||
* Description: Q7 vector absolute value. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicAbs |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q7 vector absolute value. |
|||
* @param[in] *pSrc points to the input buffer |
|||
* @param[out] *pDst points to the output buffer |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* \par Conditions for optimum performance |
|||
* Input and output buffers should be aligned by 32-bit |
|||
* |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F. |
|||
*/ |
|||
|
|||
void arm_abs_q7( |
|||
q7_t * pSrc, |
|||
q7_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
q7_t in; /* Input value1 */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t in1, in2, in3, in4; /* temporary input variables */ |
|||
q31_t out1, out2, out3, out4; /* temporary output variables */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = |A| */ |
|||
/* Read inputs */ |
|||
in1 = (q31_t) * pSrc; |
|||
in2 = (q31_t) * (pSrc + 1); |
|||
in3 = (q31_t) * (pSrc + 2); |
|||
|
|||
/* find absolute value */ |
|||
out1 = (in1 > 0) ? in1 : (q31_t)__QSUB8(0, in1); |
|||
|
|||
/* read input */ |
|||
in4 = (q31_t) * (pSrc + 3); |
|||
|
|||
/* find absolute value */ |
|||
out2 = (in2 > 0) ? in2 : (q31_t)__QSUB8(0, in2); |
|||
|
|||
/* store result to destination */ |
|||
*pDst = (q7_t) out1; |
|||
|
|||
/* find absolute value */ |
|||
out3 = (in3 > 0) ? in3 : (q31_t)__QSUB8(0, in3); |
|||
|
|||
/* find absolute value */ |
|||
out4 = (in4 > 0) ? in4 : (q31_t)__QSUB8(0, in4); |
|||
|
|||
/* store result to destination */ |
|||
*(pDst + 1) = (q7_t) out2; |
|||
|
|||
/* store result to destination */ |
|||
*(pDst + 2) = (q7_t) out3; |
|||
|
|||
/* store result to destination */ |
|||
*(pDst + 3) = (q7_t) out4; |
|||
|
|||
/* update pointers to process next samples */ |
|||
pSrc += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #define ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = |A| */ |
|||
/* Read the input */ |
|||
in = *pSrc++; |
|||
|
|||
/* Store the Absolute result in the destination buffer */ |
|||
*pDst++ = (in > 0) ? in : ((in == (q7_t) 0x80) ? 0x7f : -in); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicAbs group |
|||
*/ |
@ -0,0 +1,150 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_add_f32.c |
|||
* |
|||
* Description: Floating-point vector addition. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup BasicAdd Vector Addition |
|||
* |
|||
* Element-by-element addition of two vectors. |
|||
* |
|||
* <pre> |
|||
* pDst[n] = pSrcA[n] + pSrcB[n], 0 <= n < blockSize. |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicAdd |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Floating-point vector addition. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_add_f32( |
|||
float32_t * pSrcA, |
|||
float32_t * pSrcB, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t inA1, inA2, inA3, inA4; /* temporary input variabels */ |
|||
float32_t inB1, inB2, inB3, inB4; /* temporary input variables */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
|
|||
/* read four inputs from sourceA and four inputs from sourceB */ |
|||
inA1 = *pSrcA; |
|||
inB1 = *pSrcB; |
|||
inA2 = *(pSrcA + 1); |
|||
inB2 = *(pSrcB + 1); |
|||
inA3 = *(pSrcA + 2); |
|||
inB3 = *(pSrcB + 2); |
|||
inA4 = *(pSrcA + 3); |
|||
inB4 = *(pSrcB + 3); |
|||
|
|||
/* C = A + B */ |
|||
/* add and store result to destination */ |
|||
*pDst = inA1 + inB1; |
|||
*(pDst + 1) = inA2 + inB2; |
|||
*(pDst + 2) = inA3 + inB3; |
|||
*(pDst + 3) = inA4 + inB4; |
|||
|
|||
/* update pointers to process next samples */ |
|||
pSrcA += 4u; |
|||
pSrcB += 4u; |
|||
pDst += 4u; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
*pDst++ = (*pSrcA++) + (*pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicAdd group |
|||
*/ |
@ -0,0 +1,140 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_add_q15.c |
|||
* |
|||
* Description: Q15 vector addition |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicAdd |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q15 vector addition. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_add_q15( |
|||
q15_t * pSrcA, |
|||
q15_t * pSrcB, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t inA1, inA2, inB1, inB2; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
inA1 = *__SIMD32(pSrcA)++; |
|||
inA2 = *__SIMD32(pSrcA)++; |
|||
inB1 = *__SIMD32(pSrcB)++; |
|||
inB2 = *__SIMD32(pSrcB)++; |
|||
|
|||
*__SIMD32(pDst)++ = __QADD16(inA1, inB1); |
|||
*__SIMD32(pDst)++ = __QADD16(inA2, inB2); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
*pDst++ = (q15_t) __QADD16(*pSrcA++, *pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
|
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ + *pSrcB++), 16); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicAdd group |
|||
*/ |
@ -0,0 +1,148 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_add_q31.c |
|||
* |
|||
* Description: Q31 vector addition. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicAdd |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Q31 vector addition. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_add_q31( |
|||
q31_t * pSrcA, |
|||
q31_t * pSrcB, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t inA1, inA2, inA3, inA4; |
|||
q31_t inB1, inB2, inB3, inB4; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
inA1 = *pSrcA++; |
|||
inA2 = *pSrcA++; |
|||
inB1 = *pSrcB++; |
|||
inB2 = *pSrcB++; |
|||
|
|||
inA3 = *pSrcA++; |
|||
inA4 = *pSrcA++; |
|||
inB3 = *pSrcB++; |
|||
inB4 = *pSrcB++; |
|||
|
|||
*pDst++ = __QADD(inA1, inB1); |
|||
*pDst++ = __QADD(inA2, inB2); |
|||
*pDst++ = __QADD(inA3, inB3); |
|||
*pDst++ = __QADD(inA4, inB4); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
*pDst++ = __QADD(*pSrcA++, *pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
|
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ + *pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicAdd group |
|||
*/ |
@ -0,0 +1,134 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_add_q7.c |
|||
* |
|||
* Description: Q7 vector addition. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicAdd |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q7 vector addition. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated. |
|||
*/ |
|||
|
|||
void arm_add_q7( |
|||
q7_t * pSrcA, |
|||
q7_t * pSrcB, |
|||
q7_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
*pDst++ = (q7_t) __SSAT(*pSrcA++ + *pSrcB++, 8); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
|
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + B */ |
|||
/* Add and then store the results in the destination buffer. */ |
|||
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ + *pSrcB++, 8); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicAdd group |
|||
*/ |
@ -0,0 +1,135 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_dot_prod_f32.c |
|||
* |
|||
* Description: Floating-point dot product. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup dot_prod Vector Dot Product |
|||
* |
|||
* Computes the dot product of two vectors. |
|||
* The vectors are multiplied element-by-element and then summed. |
|||
* |
|||
* <pre> |
|||
* sum = pSrcA[0]*pSrcB[0] + pSrcA[1]*pSrcB[1] + ... + pSrcA[blockSize-1]*pSrcB[blockSize-1] |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup dot_prod |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Dot product of floating-point vectors. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @param[out] *result output result returned here |
|||
* @return none. |
|||
*/ |
|||
|
|||
|
|||
void arm_dot_prod_f32( |
|||
float32_t * pSrcA, |
|||
float32_t * pSrcB, |
|||
uint32_t blockSize, |
|||
float32_t * result) |
|||
{ |
|||
float32_t sum = 0.0f; /* Temporary result storage */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ |
|||
/* Calculate dot product and then store the result in a temporary buffer */ |
|||
sum += (*pSrcA++) * (*pSrcB++); |
|||
sum += (*pSrcA++) * (*pSrcB++); |
|||
sum += (*pSrcA++) * (*pSrcB++); |
|||
sum += (*pSrcA++) * (*pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ |
|||
/* Calculate dot product and then store the result in a temporary buffer. */ |
|||
sum += (*pSrcA++) * (*pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
/* Store the result back in the destination buffer */ |
|||
*result = sum; |
|||
} |
|||
|
|||
/** |
|||
* @} end of dot_prod group |
|||
*/ |
@ -0,0 +1,140 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_dot_prod_q15.c |
|||
* |
|||
* Description: Q15 dot product. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup dot_prod |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Dot product of Q15 vectors. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @param[out] *result output result returned here |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The intermediate multiplications are in 1.15 x 1.15 = 2.30 format and these |
|||
* results are added to a 64-bit accumulator in 34.30 format. |
|||
* Nonsaturating additions are used and given that there are 33 guard bits in the accumulator |
|||
* there is no risk of overflow. |
|||
* The return result is in 34.30 format. |
|||
*/ |
|||
|
|||
void arm_dot_prod_q15( |
|||
q15_t * pSrcA, |
|||
q15_t * pSrcB, |
|||
uint32_t blockSize, |
|||
q63_t * result) |
|||
{ |
|||
q63_t sum = 0; /* Temporary result storage */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ |
|||
/* Calculate dot product and then store the result in a temporary buffer. */ |
|||
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum); |
|||
sum = __SMLALD(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ |
|||
/* Calculate dot product and then store the results in a temporary buffer. */ |
|||
sum = __SMLALD(*pSrcA++, *pSrcB++, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ |
|||
/* Calculate dot product and then store the results in a temporary buffer. */ |
|||
sum += (q63_t) ((q31_t) * pSrcA++ * *pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
/* Store the result in the destination buffer in 34.30 format */ |
|||
*result = sum; |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of dot_prod group |
|||
*/ |
@ -0,0 +1,143 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_dot_prod_q31.c |
|||
* |
|||
* Description: Q31 dot product. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup dot_prod |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Dot product of Q31 vectors. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @param[out] *result output result returned here |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The intermediate multiplications are in 1.31 x 1.31 = 2.62 format and these |
|||
* are truncated to 2.48 format by discarding the lower 14 bits. |
|||
* The 2.48 result is then added without saturation to a 64-bit accumulator in 16.48 format. |
|||
* There are 15 guard bits in the accumulator and there is no risk of overflow as long as |
|||
* the length of the vectors is less than 2^16 elements. |
|||
* The return result is in 16.48 format. |
|||
*/ |
|||
|
|||
void arm_dot_prod_q31( |
|||
q31_t * pSrcA, |
|||
q31_t * pSrcB, |
|||
uint32_t blockSize, |
|||
q63_t * result) |
|||
{ |
|||
q63_t sum = 0; /* Temporary result storage */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t inA1, inA2, inA3, inA4; |
|||
q31_t inB1, inB2, inB3, inB4; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ |
|||
/* Calculate dot product and then store the result in a temporary buffer. */ |
|||
inA1 = *pSrcA++; |
|||
inA2 = *pSrcA++; |
|||
inA3 = *pSrcA++; |
|||
inA4 = *pSrcA++; |
|||
inB1 = *pSrcB++; |
|||
inB2 = *pSrcB++; |
|||
inB3 = *pSrcB++; |
|||
inB4 = *pSrcB++; |
|||
|
|||
sum += ((q63_t) inA1 * inB1) >> 14u; |
|||
sum += ((q63_t) inA2 * inB2) >> 14u; |
|||
sum += ((q63_t) inA3 * inB3) >> 14u; |
|||
sum += ((q63_t) inA4 * inB4) >> 14u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ |
|||
/* Calculate dot product and then store the result in a temporary buffer. */ |
|||
sum += ((q63_t) * pSrcA++ * *pSrcB++) >> 14u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* Store the result in the destination buffer in 16.48 format */ |
|||
*result = sum; |
|||
} |
|||
|
|||
/** |
|||
* @} end of dot_prod group |
|||
*/ |
@ -0,0 +1,159 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_dot_prod_q7.c |
|||
* |
|||
* Description: Q7 dot product. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup dot_prod |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Dot product of Q7 vectors. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @param[out] *result output result returned here |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The intermediate multiplications are in 1.7 x 1.7 = 2.14 format and these |
|||
* results are added to an accumulator in 18.14 format. |
|||
* Nonsaturating additions are used and there is no danger of wrap around as long as |
|||
* the vectors are less than 2^18 elements long. |
|||
* The return result is in 18.14 format. |
|||
*/ |
|||
|
|||
void arm_dot_prod_q7( |
|||
q7_t * pSrcA, |
|||
q7_t * pSrcB, |
|||
uint32_t blockSize, |
|||
q31_t * result) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
q31_t sum = 0; /* Temporary variables to store output */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
q31_t input1, input2; /* Temporary variables to store input */ |
|||
q31_t inA1, inA2, inB1, inB2; /* Temporary variables to store input */ |
|||
|
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* read 4 samples at a time from sourceA */ |
|||
input1 = *__SIMD32(pSrcA)++; |
|||
/* read 4 samples at a time from sourceB */ |
|||
input2 = *__SIMD32(pSrcB)++; |
|||
|
|||
/* extract two q7_t samples to q15_t samples */ |
|||
inA1 = __SXTB16(__ROR(input1, 8)); |
|||
/* extract reminaing two samples */ |
|||
inA2 = __SXTB16(input1); |
|||
/* extract two q7_t samples to q15_t samples */ |
|||
inB1 = __SXTB16(__ROR(input2, 8)); |
|||
/* extract reminaing two samples */ |
|||
inB2 = __SXTB16(input2); |
|||
|
|||
/* multiply and accumulate two samples at a time */ |
|||
sum = __SMLAD(inA1, inB1, sum); |
|||
sum = __SMLAD(inA2, inB2, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ |
|||
/* Dot product and then store the results in a temporary buffer. */ |
|||
sum = __SMLAD(*pSrcA++, *pSrcB++, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
|
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A[0]* B[0] + A[1]* B[1] + A[2]* B[2] + .....+ A[blockSize-1]* B[blockSize-1] */ |
|||
/* Dot product and then store the results in a temporary buffer. */ |
|||
sum += (q31_t) ((q15_t) * pSrcA++ * *pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
/* Store the result in the destination buffer in 18.14 format */ |
|||
*result = sum; |
|||
} |
|||
|
|||
/** |
|||
* @} end of dot_prod group |
|||
*/ |
@ -0,0 +1,174 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_mult_f32.c |
|||
* |
|||
* Description: Floating-point vector multiplication. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup BasicMult Vector Multiplication |
|||
* |
|||
* Element-by-element multiplication of two vectors. |
|||
* |
|||
* <pre> |
|||
* pDst[n] = pSrcA[n] * pSrcB[n], 0 <= n < blockSize. |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicMult |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Floating-point vector multiplication. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_mult_f32( |
|||
float32_t * pSrcA, |
|||
float32_t * pSrcB, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t inA1, inA2, inA3, inA4; /* temporary input variables */ |
|||
float32_t inB1, inB2, inB3, inB4; /* temporary input variables */ |
|||
float32_t out1, out2, out3, out4; /* temporary output variables */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * B */ |
|||
/* Multiply the inputs and store the results in output buffer */ |
|||
/* read sample from sourceA */ |
|||
inA1 = *pSrcA; |
|||
/* read sample from sourceB */ |
|||
inB1 = *pSrcB; |
|||
/* read sample from sourceA */ |
|||
inA2 = *(pSrcA + 1); |
|||
/* read sample from sourceB */ |
|||
inB2 = *(pSrcB + 1); |
|||
|
|||
/* out = sourceA * sourceB */ |
|||
out1 = inA1 * inB1; |
|||
|
|||
/* read sample from sourceA */ |
|||
inA3 = *(pSrcA + 2); |
|||
/* read sample from sourceB */ |
|||
inB3 = *(pSrcB + 2); |
|||
|
|||
/* out = sourceA * sourceB */ |
|||
out2 = inA2 * inB2; |
|||
|
|||
/* read sample from sourceA */ |
|||
inA4 = *(pSrcA + 3); |
|||
|
|||
/* store result to destination buffer */ |
|||
*pDst = out1; |
|||
|
|||
/* read sample from sourceB */ |
|||
inB4 = *(pSrcB + 3); |
|||
|
|||
/* out = sourceA * sourceB */ |
|||
out3 = inA3 * inB3; |
|||
|
|||
/* store result to destination buffer */ |
|||
*(pDst + 1) = out2; |
|||
|
|||
/* out = sourceA * sourceB */ |
|||
out4 = inA4 * inB4; |
|||
/* store result to destination buffer */ |
|||
*(pDst + 2) = out3; |
|||
/* store result to destination buffer */ |
|||
*(pDst + 3) = out4; |
|||
|
|||
|
|||
/* update pointers to process next samples */ |
|||
pSrcA += 4u; |
|||
pSrcB += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * B */ |
|||
/* Multiply the inputs and store the results in output buffer */ |
|||
*pDst++ = (*pSrcA++) * (*pSrcB++); |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicMult group |
|||
*/ |
@ -0,0 +1,154 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. October 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_mult_q15.c |
|||
* |
|||
* Description: Q15 vector multiplication. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicMult |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Q15 vector multiplication |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_mult_q15( |
|||
q15_t * pSrcA, |
|||
q15_t * pSrcB, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t inA1, inA2, inB1, inB2; /* temporary input variables */ |
|||
q15_t out1, out2, out3, out4; /* temporary output variables */ |
|||
q31_t mul1, mul2, mul3, mul4; /* temporary variables */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* read two samples at a time from sourceA */ |
|||
inA1 = *__SIMD32(pSrcA)++; |
|||
/* read two samples at a time from sourceB */ |
|||
inB1 = *__SIMD32(pSrcB)++; |
|||
/* read two samples at a time from sourceA */ |
|||
inA2 = *__SIMD32(pSrcA)++; |
|||
/* read two samples at a time from sourceB */ |
|||
inB2 = *__SIMD32(pSrcB)++; |
|||
|
|||
/* multiply mul = sourceA * sourceB */ |
|||
mul1 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16)); |
|||
mul2 = (q31_t) ((q15_t) inA1 * (q15_t) inB1); |
|||
mul3 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB2 >> 16)); |
|||
mul4 = (q31_t) ((q15_t) inA2 * (q15_t) inB2); |
|||
|
|||
/* saturate result to 16 bit */ |
|||
out1 = (q15_t) __SSAT(mul1 >> 15, 16); |
|||
out2 = (q15_t) __SSAT(mul2 >> 15, 16); |
|||
out3 = (q15_t) __SSAT(mul3 >> 15, 16); |
|||
out4 = (q15_t) __SSAT(mul4 >> 15, 16); |
|||
|
|||
/* store the result */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16); |
|||
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT(out2, out1, 16); |
|||
*__SIMD32(pDst)++ = __PKHBT(out4, out3, 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * B */ |
|||
/* Multiply the inputs and store the result in the destination buffer */ |
|||
*pDst++ = (q15_t) __SSAT((((q31_t) (*pSrcA++) * (*pSrcB++)) >> 15), 16); |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicMult group |
|||
*/ |
@ -0,0 +1,160 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_mult_q31.c |
|||
* |
|||
* Description: Q31 vector multiplication. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicMult |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q31 vector multiplication. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_mult_q31( |
|||
q31_t * pSrcA, |
|||
q31_t * pSrcB, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t inA1, inA2, inA3, inA4; /* temporary input variables */ |
|||
q31_t inB1, inB2, inB3, inB4; /* temporary input variables */ |
|||
q31_t out1, out2, out3, out4; /* temporary output variables */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * B */ |
|||
/* Multiply the inputs and then store the results in the destination buffer. */ |
|||
inA1 = *pSrcA++; |
|||
inA2 = *pSrcA++; |
|||
inA3 = *pSrcA++; |
|||
inA4 = *pSrcA++; |
|||
inB1 = *pSrcB++; |
|||
inB2 = *pSrcB++; |
|||
inB3 = *pSrcB++; |
|||
inB4 = *pSrcB++; |
|||
|
|||
out1 = ((q63_t) inA1 * inB1) >> 32; |
|||
out2 = ((q63_t) inA2 * inB2) >> 32; |
|||
out3 = ((q63_t) inA3 * inB3) >> 32; |
|||
out4 = ((q63_t) inA4 * inB4) >> 32; |
|||
|
|||
out1 = __SSAT(out1, 31); |
|||
out2 = __SSAT(out2, 31); |
|||
out3 = __SSAT(out3, 31); |
|||
out4 = __SSAT(out4, 31); |
|||
|
|||
*pDst++ = out1 << 1u; |
|||
*pDst++ = out2 << 1u; |
|||
*pDst++ = out3 << 1u; |
|||
*pDst++ = out4 << 1u; |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * B */ |
|||
/* Multiply the inputs and then store the results in the destination buffer. */ |
|||
inA1 = *pSrcA++; |
|||
inB1 = *pSrcB++; |
|||
out1 = ((q63_t) inA1 * inB1) >> 32; |
|||
out1 = __SSAT(out1, 31); |
|||
*pDst++ = out1 << 1u; |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * B */ |
|||
/* Multiply the inputs and then store the results in the destination buffer. */ |
|||
*pDst++ = |
|||
(q31_t) clip_q63_to_q31(((q63_t) (*pSrcA++) * (*pSrcB++)) >> 31); |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicMult group |
|||
*/ |
@ -0,0 +1,127 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_mult_q7.c |
|||
* |
|||
* Description: Q7 vector multiplication. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicMult |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q7 vector multiplication |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated. |
|||
*/ |
|||
|
|||
void arm_mult_q7( |
|||
q7_t * pSrcA, |
|||
q7_t * pSrcB, |
|||
q7_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q7_t out1, out2, out3, out4; /* Temporary variables to store the product */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * B */ |
|||
/* Multiply the inputs and store the results in temporary variables */ |
|||
out1 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); |
|||
out2 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); |
|||
out3 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); |
|||
out4 = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); |
|||
|
|||
/* Store the results of 4 inputs in the destination buffer in single cycle by packing */ |
|||
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4); |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * B */ |
|||
/* Multiply the inputs and store the result in the destination buffer */ |
|||
*pDst++ = (q7_t) __SSAT((((q15_t) (*pSrcA++) * (*pSrcB++)) >> 7), 8); |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicMult group |
|||
*/ |
@ -0,0 +1,146 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_negate_f32.c |
|||
* |
|||
* Description: Negates floating-point vectors. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup negate Vector Negate |
|||
* |
|||
* Negates the elements of a vector. |
|||
* |
|||
* <pre> |
|||
* pDst[n] = -pSrc[n], 0 <= n < blockSize. |
|||
* </pre> |
|||
* |
|||
* The functions support in-place computation allowing the source and |
|||
* destination pointers to reference the same memory buffer. |
|||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup negate |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Negates the elements of a floating-point vector. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_negate_f32( |
|||
float32_t * pSrc, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t in1, in2, in3, in4; /* temporary variables */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* read inputs from source */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
in3 = *(pSrc + 2); |
|||
in4 = *(pSrc + 3); |
|||
|
|||
/* negate the input */ |
|||
in1 = -in1; |
|||
in2 = -in2; |
|||
in3 = -in3; |
|||
in4 = -in4; |
|||
|
|||
/* store the result to destination */ |
|||
*pDst = in1; |
|||
*(pDst + 1) = in2; |
|||
*(pDst + 2) = in3; |
|||
*(pDst + 3) = in4; |
|||
|
|||
/* update pointers to process next samples */ |
|||
pSrc += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = -A */ |
|||
/* Negate and then store the results in the destination buffer. */ |
|||
*pDst++ = -*pSrc++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of negate group |
|||
*/ |
@ -0,0 +1,142 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_negate_q15.c |
|||
* |
|||
* Description: Negates Q15 vectors. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup negate |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Negates the elements of a Q15 vector. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* \par Conditions for optimum performance |
|||
* Input and output buffers should be aligned by 32-bit |
|||
* |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF. |
|||
*/ |
|||
|
|||
void arm_negate_q15( |
|||
q15_t * pSrc, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
q15_t in; |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
q31_t in1, in2; /* Temporary variables */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = -A */ |
|||
/* Read two inputs at a time */ |
|||
in1 = _SIMD32_OFFSET(pSrc); |
|||
in2 = _SIMD32_OFFSET(pSrc + 2); |
|||
|
|||
/* negate two samples at a time */ |
|||
in1 = __QSUB16(0, in1); |
|||
|
|||
/* negate two samples at a time */ |
|||
in2 = __QSUB16(0, in2); |
|||
|
|||
/* store the result to destination 2 samples at a time */ |
|||
_SIMD32_OFFSET(pDst) = in1; |
|||
/* store the result to destination 2 samples at a time */ |
|||
_SIMD32_OFFSET(pDst + 2) = in2; |
|||
|
|||
|
|||
/* update pointers to process next samples */ |
|||
pSrc += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = -A */ |
|||
/* Negate and then store the result in the destination buffer. */ |
|||
in = *pSrc++; |
|||
*pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of negate group |
|||
*/ |
@ -0,0 +1,129 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_negate_q31.c |
|||
* |
|||
* Description: Negates Q31 vectors. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup negate |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Negates the elements of a Q31 vector. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF. |
|||
*/ |
|||
|
|||
void arm_negate_q31( |
|||
q31_t * pSrc, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
q31_t in; /* Temporary variable */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t in1, in2, in3, in4; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = -A */ |
|||
/* Negate and then store the results in the destination buffer. */ |
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
in3 = *pSrc++; |
|||
in4 = *pSrc++; |
|||
|
|||
*pDst++ = __QSUB(0, in1); |
|||
*pDst++ = __QSUB(0, in2); |
|||
*pDst++ = __QSUB(0, in3); |
|||
*pDst++ = __QSUB(0, in4); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = -A */ |
|||
/* Negate and then store the result in the destination buffer. */ |
|||
in = *pSrc++; |
|||
*pDst++ = (in == INT32_MIN) ? INT32_MAX : -in; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of negate group |
|||
*/ |
@ -0,0 +1,125 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_negate_q7.c |
|||
* |
|||
* Description: Negates Q7 vectors. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup negate |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Negates the elements of a Q7 vector. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* The Q7 value -1 (0x80) will be saturated to the maximum allowable positive value 0x7F. |
|||
*/ |
|||
|
|||
void arm_negate_q7( |
|||
q7_t * pSrc, |
|||
q7_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
q7_t in; |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t input; /* Input values1-4 */ |
|||
q31_t zero = 0x00000000; |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = -A */ |
|||
/* Read four inputs */ |
|||
input = *__SIMD32(pSrc)++; |
|||
|
|||
/* Store the Negated results in the destination buffer in a single cycle by packing the results */ |
|||
*__SIMD32(pDst)++ = __QSUB8(zero, input); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = -A */ |
|||
/* Negate and then store the results in the destination buffer. */ \ |
|||
in = *pSrc++; |
|||
*pDst++ = (in == (q7_t) 0x80) ? 0x7f : -in; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of negate group |
|||
*/ |
@ -0,0 +1,165 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_offset_f32.c |
|||
* |
|||
* Description: Floating-point vector offset. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup offset Vector Offset |
|||
* |
|||
* Adds a constant offset to each element of a vector. |
|||
* |
|||
* <pre> |
|||
* pDst[n] = pSrc[n] + offset, 0 <= n < blockSize. |
|||
* </pre> |
|||
* |
|||
* The functions support in-place computation allowing the source and |
|||
* destination pointers to reference the same memory buffer. |
|||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup offset |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Adds a constant offset to a floating-point vector. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] offset is the offset to be added |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
|
|||
void arm_offset_f32( |
|||
float32_t * pSrc, |
|||
float32_t offset, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t in1, in2, in3, in4; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the results in the destination buffer. */ |
|||
/* read samples from source */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
|
|||
/* add offset to input */ |
|||
in1 = in1 + offset; |
|||
|
|||
/* read samples from source */ |
|||
in3 = *(pSrc + 2); |
|||
|
|||
/* add offset to input */ |
|||
in2 = in2 + offset; |
|||
|
|||
/* read samples from source */ |
|||
in4 = *(pSrc + 3); |
|||
|
|||
/* add offset to input */ |
|||
in3 = in3 + offset; |
|||
|
|||
/* store result to destination */ |
|||
*pDst = in1; |
|||
|
|||
/* add offset to input */ |
|||
in4 = in4 + offset; |
|||
|
|||
/* store result to destination */ |
|||
*(pDst + 1) = in2; |
|||
|
|||
/* store result to destination */ |
|||
*(pDst + 2) = in3; |
|||
|
|||
/* store result to destination */ |
|||
*(pDst + 3) = in4; |
|||
|
|||
/* update pointers to process next samples */ |
|||
pSrc += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the result in the destination buffer. */ |
|||
*pDst++ = (*pSrc++) + offset; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of offset group |
|||
*/ |
@ -0,0 +1,136 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_offset_q15.c |
|||
* |
|||
* Description: Q15 vector offset. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup offset |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Adds a constant offset to a Q15 vector. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] offset is the offset to be added |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] are saturated. |
|||
*/ |
|||
|
|||
void arm_offset_q15( |
|||
q15_t * pSrc, |
|||
q15_t offset, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t offset_packed; /* Offset packed to 32 bit */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* Offset is packed to 32 bit in order to use SIMD32 for addition */ |
|||
offset_packed = __PKHBT(offset, offset, 16); |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the results in the destination buffer, 2 samples at a time. */ |
|||
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed); |
|||
*__SIMD32(pDst)++ = __QADD16(*__SIMD32(pSrc)++, offset_packed); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the results in the destination buffer. */ |
|||
*pDst++ = (q15_t) __QADD16(*pSrc++, offset); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the results in the destination buffer. */ |
|||
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrc++ + offset), 16); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of offset group |
|||
*/ |
@ -0,0 +1,140 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_offset_q31.c |
|||
* |
|||
* Description: Q31 vector offset. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup offset |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Adds a constant offset to a Q31 vector. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] offset is the offset to be added |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] are saturated. |
|||
*/ |
|||
|
|||
void arm_offset_q31( |
|||
q31_t * pSrc, |
|||
q31_t offset, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t in1, in2, in3, in4; |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the results in the destination buffer. */ |
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
in3 = *pSrc++; |
|||
in4 = *pSrc++; |
|||
|
|||
*pDst++ = __QADD(in1, offset); |
|||
*pDst++ = __QADD(in2, offset); |
|||
*pDst++ = __QADD(in3, offset); |
|||
*pDst++ = __QADD(in4, offset); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the result in the destination buffer. */ |
|||
*pDst++ = __QADD(*pSrc++, offset); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the result in the destination buffer. */ |
|||
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrc++ + offset); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of offset group |
|||
*/ |
@ -0,0 +1,135 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_offset_q7.c |
|||
* |
|||
* Description: Q7 vector offset. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup offset |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Adds a constant offset to a Q7 vector. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] offset is the offset to be added |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q7 range [0x80 0x7F] are saturated. |
|||
*/ |
|||
|
|||
void arm_offset_q7( |
|||
q7_t * pSrc, |
|||
q7_t offset, |
|||
q7_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t offset_packed; /* Offset packed to 32 bit */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* Offset is packed to 32 bit in order to use SIMD32 for addition */ |
|||
offset_packed = __PACKq7(offset, offset, offset, offset); |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the results in the destination bufferfor 4 samples at a time. */ |
|||
*__SIMD32(pDst)++ = __QADD8(*__SIMD32(pSrc)++, offset_packed); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the result in the destination buffer. */ |
|||
*pDst++ = (q7_t) __SSAT(*pSrc++ + offset, 8); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A + offset */ |
|||
/* Add offset and then store the result in the destination buffer. */ |
|||
*pDst++ = (q7_t) __SSAT((q15_t) * pSrc++ + offset, 8); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of offset group |
|||
*/ |
@ -0,0 +1,169 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_scale_f32.c |
|||
* |
|||
* Description: Multiplies a floating-point vector by a scalar. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup scale Vector Scale |
|||
* |
|||
* Multiply a vector by a scalar value. For floating-point data, the algorithm used is: |
|||
* |
|||
* <pre> |
|||
* pDst[n] = pSrc[n] * scale, 0 <= n < blockSize. |
|||
* </pre> |
|||
* |
|||
* In the fixed-point Q7, Q15, and Q31 functions, <code>scale</code> is represented by |
|||
* a fractional multiplication <code>scaleFract</code> and an arithmetic shift <code>shift</code>. |
|||
* The shift allows the gain of the scaling operation to exceed 1.0. |
|||
* The algorithm used with fixed-point data is: |
|||
* |
|||
* <pre> |
|||
* pDst[n] = (pSrc[n] * scaleFract) << shift, 0 <= n < blockSize. |
|||
* </pre> |
|||
* |
|||
* The overall scale factor applied to the fixed-point data is |
|||
* <pre> |
|||
* scale = scaleFract * 2^shift. |
|||
* </pre> |
|||
* |
|||
* The functions support in-place computation allowing the source and destination |
|||
* pointers to reference the same memory buffer. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup scale |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Multiplies a floating-point vector by a scalar. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] scale scale factor to be applied |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
|
|||
void arm_scale_f32( |
|||
float32_t * pSrc, |
|||
float32_t scale, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t in1, in2, in3, in4; /* temporary variabels */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * scale */ |
|||
/* Scale the input and then store the results in the destination buffer. */ |
|||
/* read input samples from source */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
|
|||
/* multiply with scaling factor */ |
|||
in1 = in1 * scale; |
|||
|
|||
/* read input sample from source */ |
|||
in3 = *(pSrc + 2); |
|||
|
|||
/* multiply with scaling factor */ |
|||
in2 = in2 * scale; |
|||
|
|||
/* read input sample from source */ |
|||
in4 = *(pSrc + 3); |
|||
|
|||
/* multiply with scaling factor */ |
|||
in3 = in3 * scale; |
|||
in4 = in4 * scale; |
|||
/* store the result to destination */ |
|||
*pDst = in1; |
|||
*(pDst + 1) = in2; |
|||
*(pDst + 2) = in3; |
|||
*(pDst + 3) = in4; |
|||
|
|||
/* update pointers to process next samples */ |
|||
pSrc += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * scale */ |
|||
/* Scale the input and then store the result in the destination buffer. */ |
|||
*pDst++ = (*pSrc++) * scale; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of scale group |
|||
*/ |
@ -0,0 +1,162 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_scale_q15.c |
|||
* |
|||
* Description: Multiplies a Q15 vector by a scalar. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup scale |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Multiplies a Q15 vector by a scalar. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] scaleFract fractional portion of the scale value |
|||
* @param[in] shift number of bits to shift the result by |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.15 format. |
|||
* These are multiplied to yield a 2.30 intermediate result and this is shifted with saturation to 1.15 format. |
|||
*/ |
|||
|
|||
|
|||
void arm_scale_q15( |
|||
q15_t * pSrc, |
|||
q15_t scaleFract, |
|||
int8_t shift, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
int8_t kShift = 15 - shift; /* shift to apply after scaling */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q15_t in1, in2, in3, in4; |
|||
q31_t inA1, inA2; /* Temporary variables */ |
|||
q31_t out1, out2, out3, out4; |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Reading 2 inputs from memory */ |
|||
inA1 = *__SIMD32(pSrc)++; |
|||
inA2 = *__SIMD32(pSrc)++; |
|||
|
|||
/* C = A * scale */ |
|||
/* Scale the inputs and then store the 2 results in the destination buffer |
|||
* in single cycle by packing the outputs */ |
|||
out1 = (q31_t) ((q15_t) (inA1 >> 16) * scaleFract); |
|||
out2 = (q31_t) ((q15_t) inA1 * scaleFract); |
|||
out3 = (q31_t) ((q15_t) (inA2 >> 16) * scaleFract); |
|||
out4 = (q31_t) ((q15_t) inA2 * scaleFract); |
|||
|
|||
/* apply shifting */ |
|||
out1 = out1 >> kShift; |
|||
out2 = out2 >> kShift; |
|||
out3 = out3 >> kShift; |
|||
out4 = out4 >> kShift; |
|||
|
|||
/* saturate the output */ |
|||
in1 = (q15_t) (__SSAT(out1, 16)); |
|||
in2 = (q15_t) (__SSAT(out2, 16)); |
|||
in3 = (q15_t) (__SSAT(out3, 16)); |
|||
in4 = (q15_t) (__SSAT(out4, 16)); |
|||
|
|||
/* store the result to destination */ |
|||
*__SIMD32(pDst)++ = __PKHBT(in2, in1, 16); |
|||
*__SIMD32(pDst)++ = __PKHBT(in4, in3, 16); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * scale */ |
|||
/* Scale the input and then store the result in the destination buffer. */ |
|||
*pDst++ = (q15_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 16)); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * scale */ |
|||
/* Scale the input and then store the result in the destination buffer. */ |
|||
*pDst++ = (q15_t) (__SSAT(((q31_t) * pSrc++ * scaleFract) >> kShift, 16)); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of scale group |
|||
*/ |
@ -0,0 +1,239 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_scale_q31.c |
|||
* |
|||
* Description: Multiplies a Q31 vector by a scalar. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup scale |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Multiplies a Q31 vector by a scalar. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] scaleFract fractional portion of the scale value |
|||
* @param[in] shift number of bits to shift the result by |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.31 format. |
|||
* These are multiplied to yield a 2.62 intermediate result and this is shifted with saturation to 1.31 format. |
|||
*/ |
|||
|
|||
void arm_scale_q31( |
|||
q31_t * pSrc, |
|||
q31_t scaleFract, |
|||
int8_t shift, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
int8_t kShift = shift + 1; /* Shift to apply after scaling */ |
|||
int8_t sign = (kShift & 0x80); |
|||
uint32_t blkCnt; /* loop counter */ |
|||
q31_t in, out; |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
q31_t in1, in2, in3, in4; /* temporary input variables */ |
|||
q31_t out1, out2, out3, out4; /* temporary output variabels */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
if(sign == 0u) |
|||
{ |
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* read four inputs from source */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
in3 = *(pSrc + 2); |
|||
in4 = *(pSrc + 3); |
|||
|
|||
/* multiply input with scaler value */ |
|||
in1 = ((q63_t) in1 * scaleFract) >> 32; |
|||
in2 = ((q63_t) in2 * scaleFract) >> 32; |
|||
in3 = ((q63_t) in3 * scaleFract) >> 32; |
|||
in4 = ((q63_t) in4 * scaleFract) >> 32; |
|||
|
|||
/* apply shifting */ |
|||
out1 = in1 << kShift; |
|||
out2 = in2 << kShift; |
|||
|
|||
/* saturate the results. */ |
|||
if(in1 != (out1 >> kShift)) |
|||
out1 = 0x7FFFFFFF ^ (in1 >> 31); |
|||
|
|||
if(in2 != (out2 >> kShift)) |
|||
out2 = 0x7FFFFFFF ^ (in2 >> 31); |
|||
|
|||
out3 = in3 << kShift; |
|||
out4 = in4 << kShift; |
|||
|
|||
*pDst = out1; |
|||
*(pDst + 1) = out2; |
|||
|
|||
if(in3 != (out3 >> kShift)) |
|||
out3 = 0x7FFFFFFF ^ (in3 >> 31); |
|||
|
|||
if(in4 != (out4 >> kShift)) |
|||
out4 = 0x7FFFFFFF ^ (in4 >> 31); |
|||
|
|||
/* Store result destination */ |
|||
*(pDst + 2) = out3; |
|||
*(pDst + 3) = out4; |
|||
|
|||
/* Update pointers to process next sampels */ |
|||
pSrc += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
} |
|||
else |
|||
{ |
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* read four inputs from source */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
in3 = *(pSrc + 2); |
|||
in4 = *(pSrc + 3); |
|||
|
|||
/* multiply input with scaler value */ |
|||
in1 = ((q63_t) in1 * scaleFract) >> 32; |
|||
in2 = ((q63_t) in2 * scaleFract) >> 32; |
|||
in3 = ((q63_t) in3 * scaleFract) >> 32; |
|||
in4 = ((q63_t) in4 * scaleFract) >> 32; |
|||
|
|||
/* apply shifting */ |
|||
out1 = in1 >> -kShift; |
|||
out2 = in2 >> -kShift; |
|||
|
|||
out3 = in3 >> -kShift; |
|||
out4 = in4 >> -kShift; |
|||
|
|||
/* Store result destination */ |
|||
*pDst = out1; |
|||
*(pDst + 1) = out2; |
|||
|
|||
*(pDst + 2) = out3; |
|||
*(pDst + 3) = out4; |
|||
|
|||
/* Update pointers to process next sampels */ |
|||
pSrc += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
if(sign == 0) |
|||
{ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * scale */ |
|||
/* Scale the input and then store the result in the destination buffer. */ |
|||
in = *pSrc++; |
|||
in = ((q63_t) in * scaleFract) >> 32; |
|||
|
|||
out = in << kShift; |
|||
|
|||
if(in != (out >> kShift)) |
|||
out = 0x7FFFFFFF ^ (in >> 31); |
|||
|
|||
*pDst++ = out; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * scale */ |
|||
/* Scale the input and then store the result in the destination buffer. */ |
|||
in = *pSrc++; |
|||
in = ((q63_t) in * scaleFract) >> 32; |
|||
|
|||
out = in >> -kShift; |
|||
|
|||
*pDst++ = out; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of scale group |
|||
*/ |
@ -0,0 +1,149 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_scale_q7.c |
|||
* |
|||
* Description: Multiplies a Q7 vector by a scalar. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup scale |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Multiplies a Q7 vector by a scalar. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] scaleFract fractional portion of the scale value |
|||
* @param[in] shift number of bits to shift the result by |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The input data <code>*pSrc</code> and <code>scaleFract</code> are in 1.7 format. |
|||
* These are multiplied to yield a 2.14 intermediate result and this is shifted with saturation to 1.7 format. |
|||
*/ |
|||
|
|||
void arm_scale_q7( |
|||
q7_t * pSrc, |
|||
q7_t scaleFract, |
|||
int8_t shift, |
|||
q7_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
int8_t kShift = 7 - shift; /* shift to apply after scaling */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q7_t in1, in2, in3, in4, out1, out2, out3, out4; /* Temporary variables to store input & output */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Reading 4 inputs from memory */ |
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
in3 = *pSrc++; |
|||
in4 = *pSrc++; |
|||
|
|||
/* C = A * scale */ |
|||
/* Scale the inputs and then store the results in the temporary variables. */ |
|||
out1 = (q7_t) (__SSAT(((in1) * scaleFract) >> kShift, 8)); |
|||
out2 = (q7_t) (__SSAT(((in2) * scaleFract) >> kShift, 8)); |
|||
out3 = (q7_t) (__SSAT(((in3) * scaleFract) >> kShift, 8)); |
|||
out4 = (q7_t) (__SSAT(((in4) * scaleFract) >> kShift, 8)); |
|||
|
|||
/* Packing the individual outputs into 32bit and storing in |
|||
* destination buffer in single write */ |
|||
*__SIMD32(pDst)++ = __PACKq7(out1, out2, out3, out4); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * scale */ |
|||
/* Scale the input and then store the result in the destination buffer. */ |
|||
*pDst++ = (q7_t) (__SSAT(((*pSrc++) * scaleFract) >> kShift, 8)); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A * scale */ |
|||
/* Scale the input and then store the result in the destination buffer. */ |
|||
*pDst++ = (q7_t) (__SSAT((((q15_t) * pSrc++ * scaleFract) >> kShift), 8)); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of scale group |
|||
*/ |
@ -0,0 +1,248 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_shift_q15.c |
|||
* |
|||
* Description: Shifts the elements of a Q15 vector by a specified number of bits. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup shift |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Shifts the elements of a Q15 vector a specified number of bits. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_shift_q15( |
|||
q15_t * pSrc, |
|||
int8_t shiftBits, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
uint8_t sign; /* Sign of shiftBits */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
q15_t in1, in2; /* Temporary variables */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* Getting the sign of shiftBits */ |
|||
sign = (shiftBits & 0x80); |
|||
|
|||
/* If the shift value is positive then do right shift else left shift */ |
|||
if(sign == 0u) |
|||
{ |
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Read 2 inputs */ |
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
/* C = A << shiftBits */ |
|||
/* Shift the inputs and then store the results in the destination buffer. */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16), |
|||
__SSAT((in2 << shiftBits), 16), 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16), |
|||
__SSAT((in1 << shiftBits), 16), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in1 << shiftBits), 16), |
|||
__SSAT((in2 << shiftBits), 16), 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT(__SSAT((in2 << shiftBits), 16), |
|||
__SSAT((in1 << shiftBits), 16), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A << shiftBits */ |
|||
/* Shift and then store the results in the destination buffer. */ |
|||
*pDst++ = __SSAT((*pSrc++ << shiftBits), 16); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Read 2 inputs */ |
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
|
|||
/* C = A >> shiftBits */ |
|||
/* Shift the inputs and then store the results in the destination buffer. */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits), |
|||
(in2 >> -shiftBits), 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits), |
|||
(in1 >> -shiftBits), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
in1 = *pSrc++; |
|||
in2 = *pSrc++; |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT((in1 >> -shiftBits), |
|||
(in2 >> -shiftBits), 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pDst)++ = __PKHBT((in2 >> -shiftBits), |
|||
(in1 >> -shiftBits), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A >> shiftBits */ |
|||
/* Shift the inputs and then store the results in the destination buffer. */ |
|||
*pDst++ = (*pSrc++ >> -shiftBits); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Getting the sign of shiftBits */ |
|||
sign = (shiftBits & 0x80); |
|||
|
|||
/* If the shift value is positive then do right shift else left shift */ |
|||
if(sign == 0u) |
|||
{ |
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A << shiftBits */ |
|||
/* Shift and then store the results in the destination buffer. */ |
|||
*pDst++ = __SSAT(((q31_t) * pSrc++ << shiftBits), 16); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A >> shiftBits */ |
|||
/* Shift the inputs and then store the results in the destination buffer. */ |
|||
*pDst++ = (*pSrc++ >> -shiftBits); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of shift group |
|||
*/ |
@ -0,0 +1,203 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_shift_q31.c |
|||
* |
|||
* Description: Shifts the elements of a Q31 vector by a specified number of bits. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
/** |
|||
* @defgroup shift Vector Shift |
|||
* |
|||
* Shifts the elements of a fixed-point vector by a specified number of bits. |
|||
* There are separate functions for Q7, Q15, and Q31 data types. |
|||
* The underlying algorithm used is: |
|||
* |
|||
* <pre> |
|||
* pDst[n] = pSrc[n] << shift, 0 <= n < blockSize. |
|||
* </pre> |
|||
* |
|||
* If <code>shift</code> is positive then the elements of the vector are shifted to the left. |
|||
* If <code>shift</code> is negative then the elements of the vector are shifted to the right. |
|||
* |
|||
* The functions support in-place computation allowing the source and destination |
|||
* pointers to reference the same memory buffer. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup shift |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Shifts the elements of a Q31 vector a specified number of bits. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_shift_q31( |
|||
q31_t * pSrc, |
|||
int8_t shiftBits, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
uint8_t sign = (shiftBits & 0x80); /* Sign of shiftBits */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
q31_t in1, in2, in3, in4; /* Temporary input variables */ |
|||
q31_t out1, out2, out3, out4; /* Temporary output variables */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
|
|||
if(sign == 0u) |
|||
{ |
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A << shiftBits */ |
|||
/* Shift the input and then store the results in the destination buffer. */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
out1 = in1 << shiftBits; |
|||
in3 = *(pSrc + 2); |
|||
out2 = in2 << shiftBits; |
|||
in4 = *(pSrc + 3); |
|||
if(in1 != (out1 >> shiftBits)) |
|||
out1 = 0x7FFFFFFF ^ (in1 >> 31); |
|||
|
|||
if(in2 != (out2 >> shiftBits)) |
|||
out2 = 0x7FFFFFFF ^ (in2 >> 31); |
|||
|
|||
*pDst = out1; |
|||
out3 = in3 << shiftBits; |
|||
*(pDst + 1) = out2; |
|||
out4 = in4 << shiftBits; |
|||
|
|||
if(in3 != (out3 >> shiftBits)) |
|||
out3 = 0x7FFFFFFF ^ (in3 >> 31); |
|||
|
|||
if(in4 != (out4 >> shiftBits)) |
|||
out4 = 0x7FFFFFFF ^ (in4 >> 31); |
|||
|
|||
*(pDst + 2) = out3; |
|||
*(pDst + 3) = out4; |
|||
|
|||
/* Update destination pointer to process next sampels */ |
|||
pSrc += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A >> shiftBits */ |
|||
/* Shift the input and then store the results in the destination buffer. */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
in3 = *(pSrc + 2); |
|||
in4 = *(pSrc + 3); |
|||
|
|||
*pDst = (in1 >> -shiftBits); |
|||
*(pDst + 1) = (in2 >> -shiftBits); |
|||
*(pDst + 2) = (in3 >> -shiftBits); |
|||
*(pDst + 3) = (in4 >> -shiftBits); |
|||
|
|||
|
|||
pSrc += 4u; |
|||
pDst += 4u; |
|||
|
|||
blkCnt--; |
|||
} |
|||
|
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A (>> or <<) shiftBits */ |
|||
/* Shift the input and then store the result in the destination buffer. */ |
|||
*pDst++ = (sign == 0u) ? clip_q63_to_q31((q63_t) * pSrc++ << shiftBits) : |
|||
(*pSrc++ >> -shiftBits); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of shift group |
|||
*/ |
@ -0,0 +1,220 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_shift_q7.c |
|||
* |
|||
* Description: Processing function for the Q7 Shifting |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup shift |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Shifts the elements of a Q7 vector a specified number of bits. |
|||
* @param[in] *pSrc points to the input vector |
|||
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right. |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in the vector |
|||
* @return none. |
|||
* |
|||
* \par Conditions for optimum performance |
|||
* Input and output buffers should be aligned by 32-bit |
|||
* |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q7 range [0x8 0x7F] will be saturated. |
|||
*/ |
|||
|
|||
void arm_shift_q7( |
|||
q7_t * pSrc, |
|||
int8_t shiftBits, |
|||
q7_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
uint8_t sign; /* Sign of shiftBits */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q7_t in1; /* Input value1 */ |
|||
q7_t in2; /* Input value2 */ |
|||
q7_t in3; /* Input value3 */ |
|||
q7_t in4; /* Input value4 */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* Getting the sign of shiftBits */ |
|||
sign = (shiftBits & 0x80); |
|||
|
|||
/* If the shift value is positive then do right shift else left shift */ |
|||
if(sign == 0u) |
|||
{ |
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A << shiftBits */ |
|||
/* Read 4 inputs */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
in3 = *(pSrc + 2); |
|||
in4 = *(pSrc + 3); |
|||
|
|||
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */ |
|||
*__SIMD32(pDst)++ = __PACKq7(__SSAT((in1 << shiftBits), 8), |
|||
__SSAT((in2 << shiftBits), 8), |
|||
__SSAT((in3 << shiftBits), 8), |
|||
__SSAT((in4 << shiftBits), 8)); |
|||
/* Update source pointer to process next sampels */ |
|||
pSrc += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A << shiftBits */ |
|||
/* Shift the input and then store the result in the destination buffer. */ |
|||
*pDst++ = (q7_t) __SSAT((*pSrc++ << shiftBits), 8); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
shiftBits = -shiftBits; |
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A >> shiftBits */ |
|||
/* Read 4 inputs */ |
|||
in1 = *pSrc; |
|||
in2 = *(pSrc + 1); |
|||
in3 = *(pSrc + 2); |
|||
in4 = *(pSrc + 3); |
|||
|
|||
/* Store the Shifted result in the destination buffer in single cycle by packing the outputs */ |
|||
*__SIMD32(pDst)++ = __PACKq7((in1 >> shiftBits), (in2 >> shiftBits), |
|||
(in3 >> shiftBits), (in4 >> shiftBits)); |
|||
|
|||
|
|||
pSrc += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A >> shiftBits */ |
|||
/* Shift the input and then store the result in the destination buffer. */ |
|||
in1 = *pSrc++; |
|||
*pDst++ = (in1 >> shiftBits); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Getting the sign of shiftBits */ |
|||
sign = (shiftBits & 0x80); |
|||
|
|||
/* If the shift value is positive then do right shift else left shift */ |
|||
if(sign == 0u) |
|||
{ |
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A << shiftBits */ |
|||
/* Shift the input and then store the result in the destination buffer. */ |
|||
*pDst++ = (q7_t) __SSAT(((q15_t) * pSrc++ << shiftBits), 8); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A >> shiftBits */ |
|||
/* Shift the input and then store the result in the destination buffer. */ |
|||
*pDst++ = (*pSrc++ >> -shiftBits); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
} |
|||
|
|||
/** |
|||
* @} end of shift group |
|||
*/ |
@ -0,0 +1,150 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sub_f32.c |
|||
* |
|||
* Description: Floating-point vector subtraction. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup BasicSub Vector Subtraction |
|||
* |
|||
* Element-by-element subtraction of two vectors. |
|||
* |
|||
* <pre> |
|||
* pDst[n] = pSrcA[n] - pSrcB[n], 0 <= n < blockSize. |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q7, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicSub |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Floating-point vector subtraction. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_sub_f32( |
|||
float32_t * pSrcA, |
|||
float32_t * pSrcB, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t inA1, inA2, inA3, inA4; /* temporary variables */ |
|||
float32_t inB1, inB2, inB3, inB4; /* temporary variables */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the results in the destination buffer. */ |
|||
/* Read 4 input samples from sourceA and sourceB */ |
|||
inA1 = *pSrcA; |
|||
inB1 = *pSrcB; |
|||
inA2 = *(pSrcA + 1); |
|||
inB2 = *(pSrcB + 1); |
|||
inA3 = *(pSrcA + 2); |
|||
inB3 = *(pSrcB + 2); |
|||
inA4 = *(pSrcA + 3); |
|||
inB4 = *(pSrcB + 3); |
|||
|
|||
/* dst = srcA - srcB */ |
|||
/* subtract and store the result */ |
|||
*pDst = inA1 - inB1; |
|||
*(pDst + 1) = inA2 - inB2; |
|||
*(pDst + 2) = inA3 - inB3; |
|||
*(pDst + 3) = inA4 - inB4; |
|||
|
|||
|
|||
/* Update pointers to process next sampels */ |
|||
pSrcA += 4u; |
|||
pSrcB += 4u; |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the results in the destination buffer. */ |
|||
*pDst++ = (*pSrcA++) - (*pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicSub group |
|||
*/ |
@ -0,0 +1,140 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sub_q15.c |
|||
* |
|||
* Description: Q15 vector subtraction. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicSub |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q15 vector subtraction. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_sub_q15( |
|||
q15_t * pSrcA, |
|||
q15_t * pSrcB, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t inA1, inA2; |
|||
q31_t inB1, inB2; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the results in the destination buffer two samples at a time. */ |
|||
inA1 = *__SIMD32(pSrcA)++; |
|||
inA2 = *__SIMD32(pSrcA)++; |
|||
inB1 = *__SIMD32(pSrcB)++; |
|||
inB2 = *__SIMD32(pSrcB)++; |
|||
|
|||
*__SIMD32(pDst)++ = __QSUB16(inA1, inB1); |
|||
*__SIMD32(pDst)++ = __QSUB16(inA2, inB2); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the result in the destination buffer. */ |
|||
*pDst++ = (q15_t) __QSUB16(*pSrcA++, *pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the result in the destination buffer. */ |
|||
*pDst++ = (q15_t) __SSAT(((q31_t) * pSrcA++ - *pSrcB++), 16); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicSub group |
|||
*/ |
@ -0,0 +1,146 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sub_q31.c |
|||
* |
|||
* Description: Q31 vector subtraction. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicSub |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q31 vector subtraction. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q31 range [0x80000000 0x7FFFFFFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_sub_q31( |
|||
q31_t * pSrcA, |
|||
q31_t * pSrcB, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t inA1, inA2, inA3, inA4; |
|||
q31_t inB1, inB2, inB3, inB4; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the results in the destination buffer. */ |
|||
inA1 = *pSrcA++; |
|||
inA2 = *pSrcA++; |
|||
inB1 = *pSrcB++; |
|||
inB2 = *pSrcB++; |
|||
|
|||
inA3 = *pSrcA++; |
|||
inA4 = *pSrcA++; |
|||
inB3 = *pSrcB++; |
|||
inB4 = *pSrcB++; |
|||
|
|||
*pDst++ = __QSUB(inA1, inB1); |
|||
*pDst++ = __QSUB(inA2, inB2); |
|||
*pDst++ = __QSUB(inA3, inB3); |
|||
*pDst++ = __QSUB(inA4, inB4); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the result in the destination buffer. */ |
|||
*pDst++ = __QSUB(*pSrcA++, *pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the result in the destination buffer. */ |
|||
*pDst++ = (q31_t) clip_q63_to_q31((q63_t) * pSrcA++ - *pSrcB++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicSub group |
|||
*/ |
@ -0,0 +1,131 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sub_q7.c |
|||
* |
|||
* Description: Q7 vector subtraction. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BasicSub |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q7 vector subtraction. |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] blockSize number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q7 range [0x80 0x7F] will be saturated. |
|||
*/ |
|||
|
|||
void arm_sub_q7( |
|||
q7_t * pSrcA, |
|||
q7_t * pSrcB, |
|||
q7_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the results in the destination buffer 4 samples at a time. */ |
|||
*__SIMD32(pDst)++ = __QSUB8(*__SIMD32(pSrcA)++, *__SIMD32(pSrcB)++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the result in the destination buffer. */ |
|||
*pDst++ = __SSAT(*pSrcA++ - *pSrcB++, 8); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* Initialize blkCnt with number of samples */ |
|||
blkCnt = blockSize; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C = A - B */ |
|||
/* Subtract and then store the result in the destination buffer. */ |
|||
*pDst++ = (q7_t) __SSAT((q15_t) * pSrcA++ - *pSrcB++, 8); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of BasicSub group |
|||
*/ |
27251
lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/CommonTables/arm_common_tables.c
File diff suppressed because it is too large
View File
File diff suppressed because it is too large
View File
@ -0,0 +1,156 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_const_structs.c |
|||
* |
|||
* Description: This file has constant structs that are initialized for |
|||
* user convenience. For example, some can be given as |
|||
* arguments to the arm_cfft_f32() function. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_const_structs.h" |
|||
|
|||
//Floating-point structs |
|||
|
|||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len16 = { |
|||
16, twiddleCoef_16, armBitRevIndexTable16, ARMBITREVINDEXTABLE__16_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len32 = { |
|||
32, twiddleCoef_32, armBitRevIndexTable32, ARMBITREVINDEXTABLE__32_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len64 = { |
|||
64, twiddleCoef_64, armBitRevIndexTable64, ARMBITREVINDEXTABLE__64_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len128 = { |
|||
128, twiddleCoef_128, armBitRevIndexTable128, ARMBITREVINDEXTABLE_128_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len256 = { |
|||
256, twiddleCoef_256, armBitRevIndexTable256, ARMBITREVINDEXTABLE_256_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len512 = { |
|||
512, twiddleCoef_512, armBitRevIndexTable512, ARMBITREVINDEXTABLE_512_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len1024 = { |
|||
1024, twiddleCoef_1024, armBitRevIndexTable1024, ARMBITREVINDEXTABLE1024_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len2048 = { |
|||
2048, twiddleCoef_2048, armBitRevIndexTable2048, ARMBITREVINDEXTABLE2048_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_f32 arm_cfft_sR_f32_len4096 = { |
|||
4096, twiddleCoef_4096, armBitRevIndexTable4096, ARMBITREVINDEXTABLE4096_TABLE_LENGTH |
|||
}; |
|||
|
|||
//Fixed-point structs |
|||
|
|||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len16 = { |
|||
16, twiddleCoef_16_q31, armBitRevIndexTable_fixed_16, ARMBITREVINDEXTABLE_FIXED___16_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len32 = { |
|||
32, twiddleCoef_32_q31, armBitRevIndexTable_fixed_32, ARMBITREVINDEXTABLE_FIXED___32_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len64 = { |
|||
64, twiddleCoef_64_q31, armBitRevIndexTable_fixed_64, ARMBITREVINDEXTABLE_FIXED___64_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len128 = { |
|||
128, twiddleCoef_128_q31, armBitRevIndexTable_fixed_128, ARMBITREVINDEXTABLE_FIXED__128_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len256 = { |
|||
256, twiddleCoef_256_q31, armBitRevIndexTable_fixed_256, ARMBITREVINDEXTABLE_FIXED__256_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len512 = { |
|||
512, twiddleCoef_512_q31, armBitRevIndexTable_fixed_512, ARMBITREVINDEXTABLE_FIXED__512_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len1024 = { |
|||
1024, twiddleCoef_1024_q31, armBitRevIndexTable_fixed_1024, ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len2048 = { |
|||
2048, twiddleCoef_2048_q31, armBitRevIndexTable_fixed_2048, ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q31 arm_cfft_sR_q31_len4096 = { |
|||
4096, twiddleCoef_4096_q31, armBitRevIndexTable_fixed_4096, ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH |
|||
}; |
|||
|
|||
|
|||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len16 = { |
|||
16, twiddleCoef_16_q15, armBitRevIndexTable_fixed_16, ARMBITREVINDEXTABLE_FIXED___16_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len32 = { |
|||
32, twiddleCoef_32_q15, armBitRevIndexTable_fixed_32, ARMBITREVINDEXTABLE_FIXED___32_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len64 = { |
|||
64, twiddleCoef_64_q15, armBitRevIndexTable_fixed_64, ARMBITREVINDEXTABLE_FIXED___64_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len128 = { |
|||
128, twiddleCoef_128_q15, armBitRevIndexTable_fixed_128, ARMBITREVINDEXTABLE_FIXED__128_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len256 = { |
|||
256, twiddleCoef_256_q15, armBitRevIndexTable_fixed_256, ARMBITREVINDEXTABLE_FIXED__256_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len512 = { |
|||
512, twiddleCoef_512_q15, armBitRevIndexTable_fixed_512, ARMBITREVINDEXTABLE_FIXED__512_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len1024 = { |
|||
1024, twiddleCoef_1024_q15, armBitRevIndexTable_fixed_1024, ARMBITREVINDEXTABLE_FIXED_1024_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len2048 = { |
|||
2048, twiddleCoef_2048_q15, armBitRevIndexTable_fixed_2048, ARMBITREVINDEXTABLE_FIXED_2048_TABLE_LENGTH |
|||
}; |
|||
|
|||
const arm_cfft_instance_q15 arm_cfft_sR_q15_len4096 = { |
|||
4096, twiddleCoef_4096_q15, armBitRevIndexTable_fixed_4096, ARMBITREVINDEXTABLE_FIXED_4096_TABLE_LENGTH |
|||
}; |
@ -0,0 +1,182 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_conj_f32.c |
|||
* |
|||
* Description: Floating-point complex conjugate. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup cmplx_conj Complex Conjugate |
|||
* |
|||
* Conjugates the elements of a complex data vector. |
|||
* |
|||
* The <code>pSrc</code> points to the source data and |
|||
* <code>pDst</code> points to the where the result should be written. |
|||
* <code>numSamples</code> specifies the number of complex samples |
|||
* and the data in each array is stored in an interleaved fashion |
|||
* (real, imag, real, imag, ...). |
|||
* Each array has a total of <code>2*numSamples</code> values. |
|||
* The underlying algorithm is used: |
|||
* |
|||
* <pre> |
|||
* for(n=0; n<numSamples; n++) { |
|||
* pDst[(2*n)+0)] = pSrc[(2*n)+0]; // real part |
|||
* pDst[(2*n)+1)] = -pSrc[(2*n)+1]; // imag part |
|||
* } |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_conj |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Floating-point complex conjugate. |
|||
* @param *pSrc points to the input vector |
|||
* @param *pDst points to the output vector |
|||
* @param numSamples number of complex samples in each vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_cmplx_conj_f32( |
|||
float32_t * pSrc, |
|||
float32_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t inR1, inR2, inR3, inR4; |
|||
float32_t inI1, inI2, inI3, inI4; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */ |
|||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */ |
|||
/* read real input samples */ |
|||
inR1 = pSrc[0]; |
|||
/* store real samples to destination */ |
|||
pDst[0] = inR1; |
|||
inR2 = pSrc[2]; |
|||
pDst[2] = inR2; |
|||
inR3 = pSrc[4]; |
|||
pDst[4] = inR3; |
|||
inR4 = pSrc[6]; |
|||
pDst[6] = inR4; |
|||
|
|||
/* read imaginary input samples */ |
|||
inI1 = pSrc[1]; |
|||
inI2 = pSrc[3]; |
|||
|
|||
/* conjugate input */ |
|||
inI1 = -inI1; |
|||
|
|||
/* read imaginary input samples */ |
|||
inI3 = pSrc[5]; |
|||
|
|||
/* conjugate input */ |
|||
inI2 = -inI2; |
|||
|
|||
/* read imaginary input samples */ |
|||
inI4 = pSrc[7]; |
|||
|
|||
/* conjugate input */ |
|||
inI3 = -inI3; |
|||
|
|||
/* store imaginary samples to destination */ |
|||
pDst[1] = inI1; |
|||
pDst[3] = inI2; |
|||
|
|||
/* conjugate input */ |
|||
inI4 = -inI4; |
|||
|
|||
/* store imaginary samples to destination */ |
|||
pDst[5] = inI3; |
|||
|
|||
/* increment source pointer by 8 to process next sampels */ |
|||
pSrc += 8u; |
|||
|
|||
/* store imaginary sample to destination */ |
|||
pDst[7] = inI4; |
|||
|
|||
/* increment destination pointer by 8 to store next samples */ |
|||
pDst += 8u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
blkCnt = numSamples; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* realOut + j (imagOut) = realIn + j (-1) imagIn */ |
|||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */ |
|||
*pDst++ = *pSrc++; |
|||
*pDst++ = -*pSrc++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_conj group |
|||
*/ |
@ -0,0 +1,161 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. October 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_conj_q15.c |
|||
* |
|||
* Description: Q15 complex conjugate. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_conj |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q15 complex conjugate. |
|||
* @param *pSrc points to the input vector |
|||
* @param *pDst points to the output vector |
|||
* @param numSamples number of complex samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* The Q15 value -1 (0x8000) will be saturated to the maximum allowable positive value 0x7FFF. |
|||
*/ |
|||
|
|||
void arm_cmplx_conj_q15( |
|||
q15_t * pSrc, |
|||
q15_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
q31_t in1, in2, in3, in4; |
|||
q31_t zero = 0; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */ |
|||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */ |
|||
in1 = *__SIMD32(pSrc)++; |
|||
in2 = *__SIMD32(pSrc)++; |
|||
in3 = *__SIMD32(pSrc)++; |
|||
in4 = *__SIMD32(pSrc)++; |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
in1 = __QASX(zero, in1); |
|||
in2 = __QASX(zero, in2); |
|||
in3 = __QASX(zero, in3); |
|||
in4 = __QASX(zero, in4); |
|||
|
|||
#else |
|||
|
|||
in1 = __QSAX(zero, in1); |
|||
in2 = __QSAX(zero, in2); |
|||
in3 = __QSAX(zero, in3); |
|||
in4 = __QSAX(zero, in4); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
in1 = ((uint32_t) in1 >> 16) | ((uint32_t) in1 << 16); |
|||
in2 = ((uint32_t) in2 >> 16) | ((uint32_t) in2 << 16); |
|||
in3 = ((uint32_t) in3 >> 16) | ((uint32_t) in3 << 16); |
|||
in4 = ((uint32_t) in4 >> 16) | ((uint32_t) in4 << 16); |
|||
|
|||
*__SIMD32(pDst)++ = in1; |
|||
*__SIMD32(pDst)++ = in2; |
|||
*__SIMD32(pDst)++ = in3; |
|||
*__SIMD32(pDst)++ = in4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */ |
|||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */ |
|||
*pDst++ = *pSrc++; |
|||
*pDst++ = __SSAT(-*pSrc++, 16); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
q15_t in; |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
/* realOut + j (imagOut) = realIn+ j (-1) imagIn */ |
|||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */ |
|||
*pDst++ = *pSrc++; |
|||
in = *pSrc++; |
|||
*pDst++ = (in == (q15_t) 0x8000) ? 0x7fff : -in; |
|||
|
|||
/* Decrement the loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_conj group |
|||
*/ |
@ -0,0 +1,180 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_conj_q31.c |
|||
* |
|||
* Description: Q31 complex conjugate. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_conj |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q31 complex conjugate. |
|||
* @param *pSrc points to the input vector |
|||
* @param *pDst points to the output vector |
|||
* @param numSamples number of complex samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* The Q31 value -1 (0x80000000) will be saturated to the maximum allowable positive value 0x7FFFFFFF. |
|||
*/ |
|||
|
|||
void arm_cmplx_conj_q31( |
|||
q31_t * pSrc, |
|||
q31_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
q31_t in; /* Input value */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t inR1, inR2, inR3, inR4; /* Temporary real variables */ |
|||
q31_t inI1, inI2, inI3, inI4; /* Temporary imaginary variables */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */ |
|||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */ |
|||
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */ |
|||
/* read real input sample */ |
|||
inR1 = pSrc[0]; |
|||
/* store real input sample */ |
|||
pDst[0] = inR1; |
|||
|
|||
/* read imaginary input sample */ |
|||
inI1 = pSrc[1]; |
|||
|
|||
/* read real input sample */ |
|||
inR2 = pSrc[2]; |
|||
/* store real input sample */ |
|||
pDst[2] = inR2; |
|||
|
|||
/* read imaginary input sample */ |
|||
inI2 = pSrc[3]; |
|||
|
|||
/* negate imaginary input sample */ |
|||
inI1 = __QSUB(0, inI1); |
|||
|
|||
/* read real input sample */ |
|||
inR3 = pSrc[4]; |
|||
/* store real input sample */ |
|||
pDst[4] = inR3; |
|||
|
|||
/* read imaginary input sample */ |
|||
inI3 = pSrc[5]; |
|||
|
|||
/* negate imaginary input sample */ |
|||
inI2 = __QSUB(0, inI2); |
|||
|
|||
/* read real input sample */ |
|||
inR4 = pSrc[6]; |
|||
/* store real input sample */ |
|||
pDst[6] = inR4; |
|||
|
|||
/* negate imaginary input sample */ |
|||
inI3 = __QSUB(0, inI3); |
|||
|
|||
/* store imaginary input sample */ |
|||
inI4 = pSrc[7]; |
|||
|
|||
/* store imaginary input samples */ |
|||
pDst[1] = inI1; |
|||
|
|||
/* negate imaginary input sample */ |
|||
inI4 = __QSUB(0, inI4); |
|||
|
|||
/* store imaginary input samples */ |
|||
pDst[3] = inI2; |
|||
|
|||
/* increment source pointer by 8 to proecess next samples */ |
|||
pSrc += 8u; |
|||
|
|||
/* store imaginary input samples */ |
|||
pDst[5] = inI3; |
|||
pDst[7] = inI4; |
|||
|
|||
/* increment destination pointer by 8 to process next samples */ |
|||
pDst += 8u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
blkCnt = numSamples; |
|||
|
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0]+jC[1] = A[0]+ j (-1) A[1] */ |
|||
/* Calculate Complex Conjugate and then store the results in the destination buffer. */ |
|||
/* Saturated to 0x7fffffff if the input is -1(0x80000000) */ |
|||
*pDst++ = *pSrc++; |
|||
in = *pSrc++; |
|||
*pDst++ = (in == INT32_MIN) ? INT32_MAX : -in; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_conj group |
|||
*/ |
@ -0,0 +1,203 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_dot_prod_f32.c |
|||
* |
|||
* Description: Floating-point complex dot product |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup cmplx_dot_prod Complex Dot Product |
|||
* |
|||
* Computes the dot product of two complex vectors. |
|||
* The vectors are multiplied element-by-element and then summed. |
|||
* |
|||
* The <code>pSrcA</code> points to the first complex input vector and |
|||
* <code>pSrcB</code> points to the second complex input vector. |
|||
* <code>numSamples</code> specifies the number of complex samples |
|||
* and the data in each array is stored in an interleaved fashion |
|||
* (real, imag, real, imag, ...). |
|||
* Each array has a total of <code>2*numSamples</code> values. |
|||
* |
|||
* The underlying algorithm is used: |
|||
* <pre> |
|||
* realResult=0; |
|||
* imagResult=0; |
|||
* for(n=0; n<numSamples; n++) { |
|||
* realResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+0] - pSrcA[(2*n)+1]*pSrcB[(2*n)+1]; |
|||
* imagResult += pSrcA[(2*n)+0]*pSrcB[(2*n)+1] + pSrcA[(2*n)+1]*pSrcB[(2*n)+0]; |
|||
* } |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_dot_prod |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Floating-point complex dot product |
|||
* @param *pSrcA points to the first input vector |
|||
* @param *pSrcB points to the second input vector |
|||
* @param numSamples number of complex samples in each vector |
|||
* @param *realResult real part of the result returned here |
|||
* @param *imagResult imaginary part of the result returned here |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_cmplx_dot_prod_f32( |
|||
float32_t * pSrcA, |
|||
float32_t * pSrcB, |
|||
uint32_t numSamples, |
|||
float32_t * realResult, |
|||
float32_t * imagResult) |
|||
{ |
|||
float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result storage */ |
|||
float32_t a0,b0,c0,d0; |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += a0 * c0; |
|||
imag_sum += a0 * d0; |
|||
real_sum -= b0 * d0; |
|||
imag_sum += b0 * c0; |
|||
|
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += a0 * c0; |
|||
imag_sum += a0 * d0; |
|||
real_sum -= b0 * d0; |
|||
imag_sum += b0 * c0; |
|||
|
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += a0 * c0; |
|||
imag_sum += a0 * d0; |
|||
real_sum -= b0 * d0; |
|||
imag_sum += b0 * c0; |
|||
|
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += a0 * c0; |
|||
imag_sum += a0 * d0; |
|||
real_sum -= b0 * d0; |
|||
imag_sum += b0 * c0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples & 0x3u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += a0 * c0; |
|||
imag_sum += a0 * d0; |
|||
real_sum -= b0 * d0; |
|||
imag_sum += b0 * c0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += a0 * c0; |
|||
imag_sum += a0 * d0; |
|||
real_sum -= b0 * d0; |
|||
imag_sum += b0 * c0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
/* Store the real and imaginary results in the destination buffers */ |
|||
*realResult = real_sum; |
|||
*imagResult = imag_sum; |
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_dot_prod group |
|||
*/ |
@ -0,0 +1,189 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_dot_prod_q15.c |
|||
* |
|||
* Description: Processing function for the Q15 Complex Dot product |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_dot_prod |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q15 complex dot product |
|||
* @param *pSrcA points to the first input vector |
|||
* @param *pSrcB points to the second input vector |
|||
* @param numSamples number of complex samples in each vector |
|||
* @param *realResult real part of the result returned here |
|||
* @param *imagResult imaginary part of the result returned here |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function is implemented using an internal 64-bit accumulator. |
|||
* The intermediate 1.15 by 1.15 multiplications are performed with full precision and yield a 2.30 result. |
|||
* These are accumulated in a 64-bit accumulator with 34.30 precision. |
|||
* As a final step, the accumulators are converted to 8.24 format. |
|||
* The return results <code>realResult</code> and <code>imagResult</code> are in 8.24 format. |
|||
*/ |
|||
|
|||
void arm_cmplx_dot_prod_q15( |
|||
q15_t * pSrcA, |
|||
q15_t * pSrcB, |
|||
uint32_t numSamples, |
|||
q31_t * realResult, |
|||
q31_t * imagResult) |
|||
{ |
|||
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */ |
|||
q15_t a0,b0,c0,d0; |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += (q31_t)a0 * c0; |
|||
imag_sum += (q31_t)a0 * d0; |
|||
real_sum -= (q31_t)b0 * d0; |
|||
imag_sum += (q31_t)b0 * c0; |
|||
|
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += (q31_t)a0 * c0; |
|||
imag_sum += (q31_t)a0 * d0; |
|||
real_sum -= (q31_t)b0 * d0; |
|||
imag_sum += (q31_t)b0 * c0; |
|||
|
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += (q31_t)a0 * c0; |
|||
imag_sum += (q31_t)a0 * d0; |
|||
real_sum -= (q31_t)b0 * d0; |
|||
imag_sum += (q31_t)b0 * c0; |
|||
|
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += (q31_t)a0 * c0; |
|||
imag_sum += (q31_t)a0 * d0; |
|||
real_sum -= (q31_t)b0 * d0; |
|||
imag_sum += (q31_t)b0 * c0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += (q31_t)a0 * c0; |
|||
imag_sum += (q31_t)a0 * d0; |
|||
real_sum -= (q31_t)b0 * d0; |
|||
imag_sum += (q31_t)b0 * c0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += a0 * c0; |
|||
imag_sum += a0 * d0; |
|||
real_sum -= b0 * d0; |
|||
imag_sum += b0 * c0; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
/* Store the real and imaginary results in 8.24 format */ |
|||
/* Convert real data in 34.30 to 8.24 by 6 right shifts */ |
|||
*realResult = (q31_t) (real_sum >> 6); |
|||
/* Convert imaginary data in 34.30 to 8.24 by 6 right shifts */ |
|||
*imagResult = (q31_t) (imag_sum >> 6); |
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_dot_prod group |
|||
*/ |
@ -0,0 +1,187 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_dot_prod_q31.c |
|||
* |
|||
* Description: Q31 complex dot product |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_dot_prod |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q31 complex dot product |
|||
* @param *pSrcA points to the first input vector |
|||
* @param *pSrcB points to the second input vector |
|||
* @param numSamples number of complex samples in each vector |
|||
* @param *realResult real part of the result returned here |
|||
* @param *imagResult imaginary part of the result returned here |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function is implemented using an internal 64-bit accumulator. |
|||
* The intermediate 1.31 by 1.31 multiplications are performed with 64-bit precision and then shifted to 16.48 format. |
|||
* The internal real and imaginary accumulators are in 16.48 format and provide 15 guard bits. |
|||
* Additions are nonsaturating and no overflow will occur as long as <code>numSamples</code> is less than 32768. |
|||
* The return results <code>realResult</code> and <code>imagResult</code> are in 16.48 format. |
|||
* Input down scaling is not required. |
|||
*/ |
|||
|
|||
void arm_cmplx_dot_prod_q31( |
|||
q31_t * pSrcA, |
|||
q31_t * pSrcB, |
|||
uint32_t numSamples, |
|||
q63_t * realResult, |
|||
q63_t * imagResult) |
|||
{ |
|||
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */ |
|||
q31_t a0,b0,c0,d0; |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += ((q63_t)a0 * c0) >> 14; |
|||
imag_sum += ((q63_t)a0 * d0) >> 14; |
|||
real_sum -= ((q63_t)b0 * d0) >> 14; |
|||
imag_sum += ((q63_t)b0 * c0) >> 14; |
|||
|
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += ((q63_t)a0 * c0) >> 14; |
|||
imag_sum += ((q63_t)a0 * d0) >> 14; |
|||
real_sum -= ((q63_t)b0 * d0) >> 14; |
|||
imag_sum += ((q63_t)b0 * c0) >> 14; |
|||
|
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += ((q63_t)a0 * c0) >> 14; |
|||
imag_sum += ((q63_t)a0 * d0) >> 14; |
|||
real_sum -= ((q63_t)b0 * d0) >> 14; |
|||
imag_sum += ((q63_t)b0 * c0) >> 14; |
|||
|
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += ((q63_t)a0 * c0) >> 14; |
|||
imag_sum += ((q63_t)a0 * d0) >> 14; |
|||
real_sum -= ((q63_t)b0 * d0) >> 14; |
|||
imag_sum += ((q63_t)b0 * c0) >> 14; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += ((q63_t)a0 * c0) >> 14; |
|||
imag_sum += ((q63_t)a0 * d0) >> 14; |
|||
real_sum -= ((q63_t)b0 * d0) >> 14; |
|||
imag_sum += ((q63_t)b0 * c0) >> 14; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
a0 = *pSrcA++; |
|||
b0 = *pSrcA++; |
|||
c0 = *pSrcB++; |
|||
d0 = *pSrcB++; |
|||
|
|||
real_sum += ((q63_t)a0 * c0) >> 14; |
|||
imag_sum += ((q63_t)a0 * d0) >> 14; |
|||
real_sum -= ((q63_t)b0 * d0) >> 14; |
|||
imag_sum += ((q63_t)b0 * c0) >> 14; |
|||
|
|||
/* Decrement the loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
/* Store the real and imaginary results in 16.48 format */ |
|||
*realResult = real_sum; |
|||
*imagResult = imag_sum; |
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_dot_prod group |
|||
*/ |
@ -0,0 +1,165 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mag_f32.c |
|||
* |
|||
* Description: Floating-point complex magnitude. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup cmplx_mag Complex Magnitude |
|||
* |
|||
* Computes the magnitude of the elements of a complex data vector. |
|||
* |
|||
* The <code>pSrc</code> points to the source data and |
|||
* <code>pDst</code> points to the where the result should be written. |
|||
* <code>numSamples</code> specifies the number of complex samples |
|||
* in the input array and the data is stored in an interleaved fashion |
|||
* (real, imag, real, imag, ...). |
|||
* The input array has a total of <code>2*numSamples</code> values; |
|||
* the output array has a total of <code>numSamples</code> values. |
|||
* The underlying algorithm is used: |
|||
* |
|||
* <pre> |
|||
* for(n=0; n<numSamples; n++) { |
|||
* pDst[n] = sqrt(pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2); |
|||
* } |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_mag |
|||
* @{ |
|||
*/ |
|||
/** |
|||
* @brief Floating-point complex magnitude. |
|||
* @param[in] *pSrc points to complex input buffer |
|||
* @param[out] *pDst points to real output buffer |
|||
* @param[in] numSamples number of complex samples in the input vector |
|||
* @return none. |
|||
* |
|||
*/ |
|||
|
|||
|
|||
void arm_cmplx_mag_f32( |
|||
float32_t * pSrc, |
|||
float32_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
float32_t realIn, imagIn; /* Temporary variables to hold input values */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
|
|||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ |
|||
realIn = *pSrc++; |
|||
imagIn = *pSrc++; |
|||
/* store the result in the destination buffer. */ |
|||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); |
|||
|
|||
realIn = *pSrc++; |
|||
imagIn = *pSrc++; |
|||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); |
|||
|
|||
realIn = *pSrc++; |
|||
imagIn = *pSrc++; |
|||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); |
|||
|
|||
realIn = *pSrc++; |
|||
imagIn = *pSrc++; |
|||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ |
|||
realIn = *pSrc++; |
|||
imagIn = *pSrc++; |
|||
/* store the result in the destination buffer. */ |
|||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
/* out = sqrt((real * real) + (imag * imag)) */ |
|||
realIn = *pSrc++; |
|||
imagIn = *pSrc++; |
|||
/* store the result in the destination buffer. */ |
|||
arm_sqrt_f32((realIn * realIn) + (imagIn * imagIn), pDst++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_mag group |
|||
*/ |
@ -0,0 +1,153 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mag_q15.c |
|||
* |
|||
* Description: Q15 complex magnitude. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_mag |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Q15 complex magnitude |
|||
* @param *pSrc points to the complex input vector |
|||
* @param *pDst points to the real output vector |
|||
* @param numSamples number of complex samples in the input vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 2.14 format. |
|||
*/ |
|||
|
|||
void arm_cmplx_mag_q15( |
|||
q15_t * pSrc, |
|||
q15_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
q31_t acc0, acc1; /* Accumulators */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
q31_t in1, in2, in3, in4; |
|||
q31_t acc2, acc3; |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
|
|||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ |
|||
in1 = *__SIMD32(pSrc)++; |
|||
in2 = *__SIMD32(pSrc)++; |
|||
in3 = *__SIMD32(pSrc)++; |
|||
in4 = *__SIMD32(pSrc)++; |
|||
|
|||
acc0 = __SMUAD(in1, in1); |
|||
acc1 = __SMUAD(in2, in2); |
|||
acc2 = __SMUAD(in3, in3); |
|||
acc3 = __SMUAD(in4, in4); |
|||
|
|||
/* store the result in 2.14 format in the destination buffer. */ |
|||
arm_sqrt_q15((q15_t) ((acc0) >> 17), pDst++); |
|||
arm_sqrt_q15((q15_t) ((acc1) >> 17), pDst++); |
|||
arm_sqrt_q15((q15_t) ((acc2) >> 17), pDst++); |
|||
arm_sqrt_q15((q15_t) ((acc3) >> 17), pDst++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ |
|||
in1 = *__SIMD32(pSrc)++; |
|||
acc0 = __SMUAD(in1, in1); |
|||
|
|||
/* store the result in 2.14 format in the destination buffer. */ |
|||
arm_sqrt_q15((q15_t) (acc0 >> 17), pDst++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
q15_t real, imag; /* Temporary variables to hold input values */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
/* out = sqrt(real * real + imag * imag) */ |
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
|
|||
acc0 = (real * real); |
|||
acc1 = (imag * imag); |
|||
|
|||
/* store the result in 2.14 format in the destination buffer. */ |
|||
arm_sqrt_q15((q15_t) (((q63_t) acc0 + acc1) >> 17), pDst++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_mag group |
|||
*/ |
@ -0,0 +1,185 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mag_q31.c |
|||
* |
|||
* Description: Q31 complex magnitude |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_mag |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q31 complex magnitude |
|||
* @param *pSrc points to the complex input vector |
|||
* @param *pDst points to the real output vector |
|||
* @param numSamples number of complex samples in the input vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 2.30 format. |
|||
* Input down scaling is not required. |
|||
*/ |
|||
|
|||
void arm_cmplx_mag_q31( |
|||
q31_t * pSrc, |
|||
q31_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
q31_t real, imag; /* Temporary variables to hold input values */ |
|||
q31_t acc0, acc1; /* Accumulators */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
q31_t real1, real2, imag1, imag2; /* Temporary variables to hold input values */ |
|||
q31_t out1, out2, out3, out4; /* Accumulators */ |
|||
q63_t mul1, mul2, mul3, mul4; /* Temporary variables */ |
|||
|
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* read complex input from source buffer */ |
|||
real1 = pSrc[0]; |
|||
imag1 = pSrc[1]; |
|||
real2 = pSrc[2]; |
|||
imag2 = pSrc[3]; |
|||
|
|||
/* calculate power of input values */ |
|||
mul1 = (q63_t) real1 *real1; |
|||
mul2 = (q63_t) imag1 *imag1; |
|||
mul3 = (q63_t) real2 *real2; |
|||
mul4 = (q63_t) imag2 *imag2; |
|||
|
|||
/* get the result to 3.29 format */ |
|||
out1 = (q31_t) (mul1 >> 33); |
|||
out2 = (q31_t) (mul2 >> 33); |
|||
out3 = (q31_t) (mul3 >> 33); |
|||
out4 = (q31_t) (mul4 >> 33); |
|||
|
|||
/* add real and imaginary accumulators */ |
|||
out1 = out1 + out2; |
|||
out3 = out3 + out4; |
|||
|
|||
/* read complex input from source buffer */ |
|||
real1 = pSrc[4]; |
|||
imag1 = pSrc[5]; |
|||
real2 = pSrc[6]; |
|||
imag2 = pSrc[7]; |
|||
|
|||
/* calculate square root */ |
|||
arm_sqrt_q31(out1, &pDst[0]); |
|||
|
|||
/* calculate power of input values */ |
|||
mul1 = (q63_t) real1 *real1; |
|||
|
|||
/* calculate square root */ |
|||
arm_sqrt_q31(out3, &pDst[1]); |
|||
|
|||
/* calculate power of input values */ |
|||
mul2 = (q63_t) imag1 *imag1; |
|||
mul3 = (q63_t) real2 *real2; |
|||
mul4 = (q63_t) imag2 *imag2; |
|||
|
|||
/* get the result to 3.29 format */ |
|||
out1 = (q31_t) (mul1 >> 33); |
|||
out2 = (q31_t) (mul2 >> 33); |
|||
out3 = (q31_t) (mul3 >> 33); |
|||
out4 = (q31_t) (mul4 >> 33); |
|||
|
|||
/* add real and imaginary accumulators */ |
|||
out1 = out1 + out2; |
|||
out3 = out3 + out4; |
|||
|
|||
/* calculate square root */ |
|||
arm_sqrt_q31(out1, &pDst[2]); |
|||
|
|||
/* increment destination by 8 to process next samples */ |
|||
pSrc += 8u; |
|||
|
|||
/* calculate square root */ |
|||
arm_sqrt_q31(out3, &pDst[3]); |
|||
|
|||
/* increment destination by 4 to process next samples */ |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
blkCnt = numSamples; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ |
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
acc0 = (q31_t) (((q63_t) real * real) >> 33); |
|||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33); |
|||
/* store the result in 2.30 format in the destination buffer. */ |
|||
arm_sqrt_q31(acc0 + acc1, pDst++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_mag group |
|||
*/ |
@ -0,0 +1,215 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mag_squared_f32.c |
|||
* |
|||
* Description: Floating-point complex magnitude squared. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup cmplx_mag_squared Complex Magnitude Squared |
|||
* |
|||
* Computes the magnitude squared of the elements of a complex data vector. |
|||
* |
|||
* The <code>pSrc</code> points to the source data and |
|||
* <code>pDst</code> points to the where the result should be written. |
|||
* <code>numSamples</code> specifies the number of complex samples |
|||
* in the input array and the data is stored in an interleaved fashion |
|||
* (real, imag, real, imag, ...). |
|||
* The input array has a total of <code>2*numSamples</code> values; |
|||
* the output array has a total of <code>numSamples</code> values. |
|||
* |
|||
* The underlying algorithm is used: |
|||
* |
|||
* <pre> |
|||
* for(n=0; n<numSamples; n++) { |
|||
* pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2; |
|||
* } |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_mag_squared |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Floating-point complex magnitude squared |
|||
* @param[in] *pSrc points to the complex input vector |
|||
* @param[out] *pDst points to the real output vector |
|||
* @param[in] numSamples number of complex samples in the input vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_cmplx_mag_squared_f32( |
|||
float32_t * pSrc, |
|||
float32_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
float32_t real, imag; /* Temporary variables to store real and imaginary values */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
float32_t real1, real2, real3, real4; /* Temporary variables to hold real values */ |
|||
float32_t imag1, imag2, imag3, imag4; /* Temporary variables to hold imaginary values */ |
|||
float32_t mul1, mul2, mul3, mul4; /* Temporary variables */ |
|||
float32_t mul5, mul6, mul7, mul8; /* Temporary variables */ |
|||
float32_t out1, out2, out3, out4; /* Temporary variables to hold output values */ |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */ |
|||
/* read real input sample from source buffer */ |
|||
real1 = pSrc[0]; |
|||
/* read imaginary input sample from source buffer */ |
|||
imag1 = pSrc[1]; |
|||
|
|||
/* calculate power of real value */ |
|||
mul1 = real1 * real1; |
|||
|
|||
/* read real input sample from source buffer */ |
|||
real2 = pSrc[2]; |
|||
|
|||
/* calculate power of imaginary value */ |
|||
mul2 = imag1 * imag1; |
|||
|
|||
/* read imaginary input sample from source buffer */ |
|||
imag2 = pSrc[3]; |
|||
|
|||
/* calculate power of real value */ |
|||
mul3 = real2 * real2; |
|||
|
|||
/* read real input sample from source buffer */ |
|||
real3 = pSrc[4]; |
|||
|
|||
/* calculate power of imaginary value */ |
|||
mul4 = imag2 * imag2; |
|||
|
|||
/* read imaginary input sample from source buffer */ |
|||
imag3 = pSrc[5]; |
|||
|
|||
/* calculate power of real value */ |
|||
mul5 = real3 * real3; |
|||
/* calculate power of imaginary value */ |
|||
mul6 = imag3 * imag3; |
|||
|
|||
/* read real input sample from source buffer */ |
|||
real4 = pSrc[6]; |
|||
|
|||
/* accumulate real and imaginary powers */ |
|||
out1 = mul1 + mul2; |
|||
|
|||
/* read imaginary input sample from source buffer */ |
|||
imag4 = pSrc[7]; |
|||
|
|||
/* accumulate real and imaginary powers */ |
|||
out2 = mul3 + mul4; |
|||
|
|||
/* calculate power of real value */ |
|||
mul7 = real4 * real4; |
|||
/* calculate power of imaginary value */ |
|||
mul8 = imag4 * imag4; |
|||
|
|||
/* store output to destination */ |
|||
pDst[0] = out1; |
|||
|
|||
/* accumulate real and imaginary powers */ |
|||
out3 = mul5 + mul6; |
|||
|
|||
/* store output to destination */ |
|||
pDst[1] = out2; |
|||
|
|||
/* accumulate real and imaginary powers */ |
|||
out4 = mul7 + mul8; |
|||
|
|||
/* store output to destination */ |
|||
pDst[2] = out3; |
|||
|
|||
/* increment destination pointer by 8 to process next samples */ |
|||
pSrc += 8u; |
|||
|
|||
/* store output to destination */ |
|||
pDst[3] = out4; |
|||
|
|||
/* increment destination pointer by 4 to process next samples */ |
|||
pDst += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
blkCnt = numSamples; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */ |
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
|
|||
/* out = (real * real) + (imag * imag) */ |
|||
/* store the result in the destination buffer. */ |
|||
*pDst++ = (real * real) + (imag * imag); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_mag_squared group |
|||
*/ |
@ -0,0 +1,148 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mag_squared_q15.c |
|||
* |
|||
* Description: Q15 complex magnitude squared. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_mag_squared |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q15 complex magnitude squared |
|||
* @param *pSrc points to the complex input vector |
|||
* @param *pDst points to the real output vector |
|||
* @param numSamples number of complex samples in the input vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format. |
|||
*/ |
|||
|
|||
void arm_cmplx_mag_squared_q15( |
|||
q15_t * pSrc, |
|||
q15_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
q31_t acc0, acc1; /* Accumulators */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
q31_t in1, in2, in3, in4; |
|||
q31_t acc2, acc3; |
|||
|
|||
/*loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */ |
|||
in1 = *__SIMD32(pSrc)++; |
|||
in2 = *__SIMD32(pSrc)++; |
|||
in3 = *__SIMD32(pSrc)++; |
|||
in4 = *__SIMD32(pSrc)++; |
|||
|
|||
acc0 = __SMUAD(in1, in1); |
|||
acc1 = __SMUAD(in2, in2); |
|||
acc2 = __SMUAD(in3, in3); |
|||
acc3 = __SMUAD(in4, in4); |
|||
|
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = (q15_t) (acc0 >> 17); |
|||
*pDst++ = (q15_t) (acc1 >> 17); |
|||
*pDst++ = (q15_t) (acc2 >> 17); |
|||
*pDst++ = (q15_t) (acc3 >> 17); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */ |
|||
in1 = *__SIMD32(pSrc)++; |
|||
acc0 = __SMUAD(in1, in1); |
|||
|
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = (q15_t) (acc0 >> 17); |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
q15_t real, imag; /* Temporary variables to store real and imaginary values */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
/* out = ((real * real) + (imag * imag)) */ |
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
acc0 = (real * real); |
|||
acc1 = (imag * imag); |
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = (q15_t) (((q63_t) acc0 + acc1) >> 17); |
|||
|
|||
/* Decrement the loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_mag_squared group |
|||
*/ |
@ -0,0 +1,161 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mag_squared_q31.c |
|||
* |
|||
* Description: Q31 complex magnitude squared. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cmplx_mag_squared |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Q31 complex magnitude squared |
|||
* @param *pSrc points to the complex input vector |
|||
* @param *pDst points to the real output vector |
|||
* @param numSamples number of complex samples in the input vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format. |
|||
* Input down scaling is not required. |
|||
*/ |
|||
|
|||
void arm_cmplx_mag_squared_q31( |
|||
q31_t * pSrc, |
|||
q31_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
q31_t real, imag; /* Temporary variables to store real and imaginary values */ |
|||
q31_t acc0, acc1; /* Accumulators */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counter */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */ |
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
acc0 = (q31_t) (((q63_t) real * real) >> 33); |
|||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33); |
|||
/* store the result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = acc0 + acc1; |
|||
|
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
acc0 = (q31_t) (((q63_t) real * real) >> 33); |
|||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33); |
|||
/* store the result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = acc0 + acc1; |
|||
|
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
acc0 = (q31_t) (((q63_t) real * real) >> 33); |
|||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33); |
|||
/* store the result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = acc0 + acc1; |
|||
|
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
acc0 = (q31_t) (((q63_t) real * real) >> 33); |
|||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33); |
|||
/* store the result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = acc0 + acc1; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[0] = (A[0] * A[0] + A[1] * A[1]) */ |
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
acc0 = (q31_t) (((q63_t) real * real) >> 33); |
|||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33); |
|||
/* store the result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = acc0 + acc1; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
/* out = ((real * real) + (imag * imag)) */ |
|||
real = *pSrc++; |
|||
imag = *pSrc++; |
|||
acc0 = (q31_t) (((q63_t) real * real) >> 33); |
|||
acc1 = (q31_t) (((q63_t) imag * imag) >> 33); |
|||
/* store the result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = acc0 + acc1; |
|||
|
|||
/* Decrement the loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of cmplx_mag_squared group |
|||
*/ |
@ -0,0 +1,207 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mult_cmplx_f32.c |
|||
* |
|||
* Description: Floating-point complex-by-complex multiplication |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup CmplxByCmplxMult Complex-by-Complex Multiplication |
|||
* |
|||
* Multiplies a complex vector by another complex vector and generates a complex result. |
|||
* The data in the complex arrays is stored in an interleaved fashion |
|||
* (real, imag, real, imag, ...). |
|||
* The parameter <code>numSamples</code> represents the number of complex |
|||
* samples processed. The complex arrays have a total of <code>2*numSamples</code> |
|||
* real values. |
|||
* |
|||
* The underlying algorithm is used: |
|||
* |
|||
* <pre> |
|||
* for(n=0; n<numSamples; n++) { |
|||
* pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1]; |
|||
* pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0]; |
|||
* } |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup CmplxByCmplxMult |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Floating-point complex-by-complex multiplication |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] numSamples number of complex samples in each vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_cmplx_mult_cmplx_f32( |
|||
float32_t * pSrcA, |
|||
float32_t * pSrcB, |
|||
float32_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
float32_t a1, b1, c1, d1; /* Temporary variables to store real and imaginary values */ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t a2, b2, c2, d2; /* Temporary variables to store real and imaginary values */ |
|||
float32_t acc1, acc2, acc3, acc4; |
|||
|
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ |
|||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ |
|||
a1 = *pSrcA; /* A[2 * i] */ |
|||
c1 = *pSrcB; /* B[2 * i] */ |
|||
|
|||
b1 = *(pSrcA + 1); /* A[2 * i + 1] */ |
|||
acc1 = a1 * c1; /* acc1 = A[2 * i] * B[2 * i] */ |
|||
|
|||
a2 = *(pSrcA + 2); /* A[2 * i + 2] */ |
|||
acc2 = (b1 * c1); /* acc2 = A[2 * i + 1] * B[2 * i] */ |
|||
|
|||
d1 = *(pSrcB + 1); /* B[2 * i + 1] */ |
|||
c2 = *(pSrcB + 2); /* B[2 * i + 2] */ |
|||
acc1 -= b1 * d1; /* acc1 = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */ |
|||
|
|||
d2 = *(pSrcB + 3); /* B[2 * i + 3] */ |
|||
acc3 = a2 * c2; /* acc3 = A[2 * i + 2] * B[2 * i + 2] */ |
|||
|
|||
b2 = *(pSrcA + 3); /* A[2 * i + 3] */ |
|||
acc2 += (a1 * d1); /* acc2 = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */ |
|||
|
|||
a1 = *(pSrcA + 4); /* A[2 * i + 4] */ |
|||
acc4 = (a2 * d2); /* acc4 = A[2 * i + 2] * B[2 * i + 3] */ |
|||
|
|||
c1 = *(pSrcB + 4); /* B[2 * i + 4] */ |
|||
acc3 -= (b2 * d2); /* acc3 = A[2 * i + 2] * B[2 * i + 2] - A[2 * i + 3] * B[2 * i + 3] */ |
|||
*pDst = acc1; /* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1] */ |
|||
|
|||
b1 = *(pSrcA + 5); /* A[2 * i + 5] */ |
|||
acc4 += b2 * c2; /* acc4 = A[2 * i + 2] * B[2 * i + 3] + A[2 * i + 3] * B[2 * i + 2] */ |
|||
|
|||
*(pDst + 1) = acc2; /* C[2 * i + 1] = A[2 * i + 1] * B[2 * i] + A[2 * i] * B[2 * i + 1] */ |
|||
acc1 = (a1 * c1); |
|||
|
|||
d1 = *(pSrcB + 5); |
|||
acc2 = (b1 * c1); |
|||
|
|||
*(pDst + 2) = acc3; |
|||
*(pDst + 3) = acc4; |
|||
|
|||
a2 = *(pSrcA + 6); |
|||
acc1 -= (b1 * d1); |
|||
|
|||
c2 = *(pSrcB + 6); |
|||
acc2 += (a1 * d1); |
|||
|
|||
b2 = *(pSrcA + 7); |
|||
acc3 = (a2 * c2); |
|||
|
|||
d2 = *(pSrcB + 7); |
|||
acc4 = (b2 * c2); |
|||
|
|||
*(pDst + 4) = acc1; |
|||
pSrcA += 8u; |
|||
|
|||
acc3 -= (b2 * d2); |
|||
acc4 += (a2 * d2); |
|||
|
|||
*(pDst + 5) = acc2; |
|||
pSrcB += 8u; |
|||
|
|||
*(pDst + 6) = acc3; |
|||
*(pDst + 7) = acc4; |
|||
|
|||
pDst += 8u; |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
blkCnt = numSamples; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ |
|||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ |
|||
a1 = *pSrcA++; |
|||
b1 = *pSrcA++; |
|||
c1 = *pSrcB++; |
|||
d1 = *pSrcB++; |
|||
|
|||
/* store the result in the destination buffer. */ |
|||
*pDst++ = (a1 * c1) - (b1 * d1); |
|||
*pDst++ = (a1 * d1) + (b1 * c1); |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of CmplxByCmplxMult group |
|||
*/ |
@ -0,0 +1,193 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mult_cmplx_q15.c |
|||
* |
|||
* Description: Q15 complex-by-complex multiplication |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup CmplxByCmplxMult |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q15 complex-by-complex multiplication |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] numSamples number of complex samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function implements 1.15 by 1.15 multiplications and finally output is converted into 3.13 format. |
|||
*/ |
|||
|
|||
void arm_cmplx_mult_cmplx_q15( |
|||
q15_t * pSrcA, |
|||
q15_t * pSrcB, |
|||
q15_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
q15_t a, b, c, d; /* Temporary variables to store real and imaginary values */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ |
|||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ |
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17); |
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17); |
|||
|
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17); |
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17); |
|||
|
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17); |
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17); |
|||
|
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17); |
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17); |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ |
|||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ |
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17); |
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17); |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ |
|||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ |
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * c) >> 17) - (((q31_t) b * d) >> 17); |
|||
/* store the result in 3.13 format in the destination buffer. */ |
|||
*pDst++ = |
|||
(q15_t) (q31_t) (((q31_t) a * d) >> 17) + (((q31_t) b * c) >> 17); |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of CmplxByCmplxMult group |
|||
*/ |
@ -0,0 +1,326 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mult_cmplx_q31.c |
|||
* |
|||
* Description: Q31 complex-by-complex multiplication |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup CmplxByCmplxMult |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Q31 complex-by-complex multiplication |
|||
* @param[in] *pSrcA points to the first input vector |
|||
* @param[in] *pSrcB points to the second input vector |
|||
* @param[out] *pDst points to the output vector |
|||
* @param[in] numSamples number of complex samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format. |
|||
* Input down scaling is not required. |
|||
*/ |
|||
|
|||
void arm_cmplx_mult_cmplx_q31( |
|||
q31_t * pSrcA, |
|||
q31_t * pSrcB, |
|||
q31_t * pDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
q31_t a, b, c, d; /* Temporary variables to store real and imaginary values */ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
q31_t mul1, mul2, mul3, mul4; |
|||
q31_t out1, out2; |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ |
|||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ |
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
mul1 = (q31_t) (((q63_t) a * c) >> 32); |
|||
mul2 = (q31_t) (((q63_t) b * d) >> 32); |
|||
mul3 = (q31_t) (((q63_t) a * d) >> 32); |
|||
mul4 = (q31_t) (((q63_t) b * c) >> 32); |
|||
|
|||
mul1 = (mul1 >> 1); |
|||
mul2 = (mul2 >> 1); |
|||
mul3 = (mul3 >> 1); |
|||
mul4 = (mul4 >> 1); |
|||
|
|||
out1 = mul1 - mul2; |
|||
out2 = mul3 + mul4; |
|||
|
|||
/* store the real result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out1; |
|||
/* store the imag result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out2; |
|||
|
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
mul1 = (q31_t) (((q63_t) a * c) >> 32); |
|||
mul2 = (q31_t) (((q63_t) b * d) >> 32); |
|||
mul3 = (q31_t) (((q63_t) a * d) >> 32); |
|||
mul4 = (q31_t) (((q63_t) b * c) >> 32); |
|||
|
|||
mul1 = (mul1 >> 1); |
|||
mul2 = (mul2 >> 1); |
|||
mul3 = (mul3 >> 1); |
|||
mul4 = (mul4 >> 1); |
|||
|
|||
out1 = mul1 - mul2; |
|||
out2 = mul3 + mul4; |
|||
|
|||
/* store the real result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out1; |
|||
/* store the imag result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out2; |
|||
|
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
mul1 = (q31_t) (((q63_t) a * c) >> 32); |
|||
mul2 = (q31_t) (((q63_t) b * d) >> 32); |
|||
mul3 = (q31_t) (((q63_t) a * d) >> 32); |
|||
mul4 = (q31_t) (((q63_t) b * c) >> 32); |
|||
|
|||
mul1 = (mul1 >> 1); |
|||
mul2 = (mul2 >> 1); |
|||
mul3 = (mul3 >> 1); |
|||
mul4 = (mul4 >> 1); |
|||
|
|||
out1 = mul1 - mul2; |
|||
out2 = mul3 + mul4; |
|||
|
|||
/* store the real result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out1; |
|||
/* store the imag result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out2; |
|||
|
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
mul1 = (q31_t) (((q63_t) a * c) >> 32); |
|||
mul2 = (q31_t) (((q63_t) b * d) >> 32); |
|||
mul3 = (q31_t) (((q63_t) a * d) >> 32); |
|||
mul4 = (q31_t) (((q63_t) b * c) >> 32); |
|||
|
|||
mul1 = (mul1 >> 1); |
|||
mul2 = (mul2 >> 1); |
|||
mul3 = (mul3 >> 1); |
|||
mul4 = (mul4 >> 1); |
|||
|
|||
out1 = mul1 - mul2; |
|||
out2 = mul3 + mul4; |
|||
|
|||
/* store the real result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out1; |
|||
/* store the imag result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out2; |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ |
|||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ |
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
mul1 = (q31_t) (((q63_t) a * c) >> 32); |
|||
mul2 = (q31_t) (((q63_t) b * d) >> 32); |
|||
mul3 = (q31_t) (((q63_t) a * d) >> 32); |
|||
mul4 = (q31_t) (((q63_t) b * c) >> 32); |
|||
|
|||
mul1 = (mul1 >> 1); |
|||
mul2 = (mul2 >> 1); |
|||
mul3 = (mul3 >> 1); |
|||
mul4 = (mul4 >> 1); |
|||
|
|||
out1 = mul1 - mul2; |
|||
out2 = mul3 + mul4; |
|||
|
|||
/* store the real result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out1; |
|||
/* store the imag result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out2; |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = numSamples >> 1u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 2 outputs at a time. |
|||
** a second loop below computes the remaining 1 sample. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ |
|||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ |
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
mul1 = (q31_t) (((q63_t) a * c) >> 32); |
|||
mul2 = (q31_t) (((q63_t) b * d) >> 32); |
|||
mul3 = (q31_t) (((q63_t) a * d) >> 32); |
|||
mul4 = (q31_t) (((q63_t) b * c) >> 32); |
|||
|
|||
mul1 = (mul1 >> 1); |
|||
mul2 = (mul2 >> 1); |
|||
mul3 = (mul3 >> 1); |
|||
mul4 = (mul4 >> 1); |
|||
|
|||
out1 = mul1 - mul2; |
|||
out2 = mul3 + mul4; |
|||
|
|||
/* store the real result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out1; |
|||
/* store the imag result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out2; |
|||
|
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
mul1 = (q31_t) (((q63_t) a * c) >> 32); |
|||
mul2 = (q31_t) (((q63_t) b * d) >> 32); |
|||
mul3 = (q31_t) (((q63_t) a * d) >> 32); |
|||
mul4 = (q31_t) (((q63_t) b * c) >> 32); |
|||
|
|||
mul1 = (mul1 >> 1); |
|||
mul2 = (mul2 >> 1); |
|||
mul3 = (mul3 >> 1); |
|||
mul4 = (mul4 >> 1); |
|||
|
|||
out1 = mul1 - mul2; |
|||
out2 = mul3 + mul4; |
|||
|
|||
/* store the real result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out1; |
|||
/* store the imag result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out2; |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 2, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x2u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */ |
|||
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */ |
|||
a = *pSrcA++; |
|||
b = *pSrcA++; |
|||
c = *pSrcB++; |
|||
d = *pSrcB++; |
|||
|
|||
mul1 = (q31_t) (((q63_t) a * c) >> 32); |
|||
mul2 = (q31_t) (((q63_t) b * d) >> 32); |
|||
mul3 = (q31_t) (((q63_t) a * d) >> 32); |
|||
mul4 = (q31_t) (((q63_t) b * c) >> 32); |
|||
|
|||
mul1 = (mul1 >> 1); |
|||
mul2 = (mul2 >> 1); |
|||
mul3 = (mul3 >> 1); |
|||
mul4 = (mul4 >> 1); |
|||
|
|||
out1 = mul1 - mul2; |
|||
out2 = mul3 + mul4; |
|||
|
|||
/* store the real result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out1; |
|||
/* store the imag result in 3.29 format in the destination buffer. */ |
|||
*pDst++ = out2; |
|||
|
|||
/* Decrement the blockSize loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of CmplxByCmplxMult group |
|||
*/ |
@ -0,0 +1,225 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mult_real_f32.c |
|||
* |
|||
* Description: Floating-point complex by real multiplication |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup CmplxByRealMult Complex-by-Real Multiplication |
|||
* |
|||
* Multiplies a complex vector by a real vector and generates a complex result. |
|||
* The data in the complex arrays is stored in an interleaved fashion |
|||
* (real, imag, real, imag, ...). |
|||
* The parameter <code>numSamples</code> represents the number of complex |
|||
* samples processed. The complex arrays have a total of <code>2*numSamples</code> |
|||
* real values while the real array has a total of <code>numSamples</code> |
|||
* real values. |
|||
* |
|||
* The underlying algorithm is used: |
|||
* |
|||
* <pre> |
|||
* for(n=0; n<numSamples; n++) { |
|||
* pCmplxDst[(2*n)+0] = pSrcCmplx[(2*n)+0] * pSrcReal[n]; |
|||
* pCmplxDst[(2*n)+1] = pSrcCmplx[(2*n)+1] * pSrcReal[n]; |
|||
* } |
|||
* </pre> |
|||
* |
|||
* There are separate functions for floating-point, Q15, and Q31 data types. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup CmplxByRealMult |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Floating-point complex-by-real multiplication |
|||
* @param[in] *pSrcCmplx points to the complex input vector |
|||
* @param[in] *pSrcReal points to the real input vector |
|||
* @param[out] *pCmplxDst points to the complex output vector |
|||
* @param[in] numSamples number of samples in each vector |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_cmplx_mult_real_f32( |
|||
float32_t * pSrcCmplx, |
|||
float32_t * pSrcReal, |
|||
float32_t * pCmplxDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
float32_t in; /* Temporary variable to store input value */ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
float32_t inA1, inA2, inA3, inA4; /* Temporary variables to hold input data */ |
|||
float32_t inA5, inA6, inA7, inA8; /* Temporary variables to hold input data */ |
|||
float32_t inB1, inB2, inB3, inB4; /* Temporary variables to hold input data */ |
|||
float32_t out1, out2, out3, out4; /* Temporary variables to hold output data */ |
|||
float32_t out5, out6, out7, out8; /* Temporary variables to hold output data */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[i]. */ |
|||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ |
|||
/* read input from complex input buffer */ |
|||
inA1 = pSrcCmplx[0]; |
|||
inA2 = pSrcCmplx[1]; |
|||
/* read input from real input buffer */ |
|||
inB1 = pSrcReal[0]; |
|||
|
|||
/* read input from complex input buffer */ |
|||
inA3 = pSrcCmplx[2]; |
|||
|
|||
/* multiply complex buffer real input with real buffer input */ |
|||
out1 = inA1 * inB1; |
|||
|
|||
/* read input from complex input buffer */ |
|||
inA4 = pSrcCmplx[3]; |
|||
|
|||
/* multiply complex buffer imaginary input with real buffer input */ |
|||
out2 = inA2 * inB1; |
|||
|
|||
/* read input from real input buffer */ |
|||
inB2 = pSrcReal[1]; |
|||
/* read input from complex input buffer */ |
|||
inA5 = pSrcCmplx[4]; |
|||
|
|||
/* multiply complex buffer real input with real buffer input */ |
|||
out3 = inA3 * inB2; |
|||
|
|||
/* read input from complex input buffer */ |
|||
inA6 = pSrcCmplx[5]; |
|||
/* read input from real input buffer */ |
|||
inB3 = pSrcReal[2]; |
|||
|
|||
/* multiply complex buffer imaginary input with real buffer input */ |
|||
out4 = inA4 * inB2; |
|||
|
|||
/* read input from complex input buffer */ |
|||
inA7 = pSrcCmplx[6]; |
|||
|
|||
/* multiply complex buffer real input with real buffer input */ |
|||
out5 = inA5 * inB3; |
|||
|
|||
/* read input from complex input buffer */ |
|||
inA8 = pSrcCmplx[7]; |
|||
|
|||
/* multiply complex buffer imaginary input with real buffer input */ |
|||
out6 = inA6 * inB3; |
|||
|
|||
/* read input from real input buffer */ |
|||
inB4 = pSrcReal[3]; |
|||
|
|||
/* store result to destination bufer */ |
|||
pCmplxDst[0] = out1; |
|||
|
|||
/* multiply complex buffer real input with real buffer input */ |
|||
out7 = inA7 * inB4; |
|||
|
|||
/* store result to destination bufer */ |
|||
pCmplxDst[1] = out2; |
|||
|
|||
/* multiply complex buffer imaginary input with real buffer input */ |
|||
out8 = inA8 * inB4; |
|||
|
|||
/* store result to destination bufer */ |
|||
pCmplxDst[2] = out3; |
|||
pCmplxDst[3] = out4; |
|||
pCmplxDst[4] = out5; |
|||
|
|||
/* incremnet complex input buffer by 8 to process next samples */ |
|||
pSrcCmplx += 8u; |
|||
|
|||
/* store result to destination bufer */ |
|||
pCmplxDst[5] = out6; |
|||
|
|||
/* increment real input buffer by 4 to process next samples */ |
|||
pSrcReal += 4u; |
|||
|
|||
/* store result to destination bufer */ |
|||
pCmplxDst[6] = out7; |
|||
pCmplxDst[7] = out8; |
|||
|
|||
/* increment destination buffer by 8 to process next sampels */ |
|||
pCmplxDst += 8u; |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
blkCnt = numSamples; |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[i]. */ |
|||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ |
|||
in = *pSrcReal++; |
|||
/* store the result in the destination buffer. */ |
|||
*pCmplxDst++ = (*pSrcCmplx++) * (in); |
|||
*pCmplxDst++ = (*pSrcCmplx++) * (in); |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of CmplxByRealMult group |
|||
*/ |
@ -0,0 +1,203 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. October 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mult_real_q15.c |
|||
* |
|||
* Description: Q15 complex by real multiplication |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup CmplxByRealMult |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Q15 complex-by-real multiplication |
|||
* @param[in] *pSrcCmplx points to the complex input vector |
|||
* @param[in] *pSrcReal points to the real input vector |
|||
* @param[out] *pCmplxDst points to the complex output vector |
|||
* @param[in] numSamples number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q15 range [0x8000 0x7FFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_cmplx_mult_real_q15( |
|||
q15_t * pSrcCmplx, |
|||
q15_t * pSrcReal, |
|||
q15_t * pCmplxDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
q15_t in; /* Temporary variable to store input value */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
q31_t inA1, inA2; /* Temporary variables to hold input data */ |
|||
q31_t inB1; /* Temporary variables to hold input data */ |
|||
q15_t out1, out2, out3, out4; /* Temporary variables to hold output data */ |
|||
q31_t mul1, mul2, mul3, mul4; /* Temporary variables to hold intermediate data */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[i]. */ |
|||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ |
|||
/* read complex number both real and imaginary from complex input buffer */ |
|||
inA1 = *__SIMD32(pSrcCmplx)++; |
|||
/* read two real values at a time from real input buffer */ |
|||
inB1 = *__SIMD32(pSrcReal)++; |
|||
/* read complex number both real and imaginary from complex input buffer */ |
|||
inA2 = *__SIMD32(pSrcCmplx)++; |
|||
|
|||
/* multiply complex number with real numbers */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
mul1 = (q31_t) ((q15_t) (inA1) * (q15_t) (inB1)); |
|||
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1)); |
|||
mul3 = (q31_t) ((q15_t) (inA2) * (q15_t) (inB1 >> 16)); |
|||
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB1 >> 16)); |
|||
|
|||
#else |
|||
|
|||
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16)); |
|||
mul1 = (q31_t) ((q15_t) inA1 * (q15_t) (inB1 >> 16)); |
|||
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) inB1); |
|||
mul3 = (q31_t) ((q15_t) inA2 * (q15_t) inB1); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* saturate the result */ |
|||
out1 = (q15_t) __SSAT(mul1 >> 15u, 16); |
|||
out2 = (q15_t) __SSAT(mul2 >> 15u, 16); |
|||
out3 = (q15_t) __SSAT(mul3 >> 15u, 16); |
|||
out4 = (q15_t) __SSAT(mul4 >> 15u, 16); |
|||
|
|||
/* pack real and imaginary outputs and store them to destination */ |
|||
*__SIMD32(pCmplxDst)++ = __PKHBT(out1, out2, 16); |
|||
*__SIMD32(pCmplxDst)++ = __PKHBT(out3, out4, 16); |
|||
|
|||
inA1 = *__SIMD32(pSrcCmplx)++; |
|||
inB1 = *__SIMD32(pSrcReal)++; |
|||
inA2 = *__SIMD32(pSrcCmplx)++; |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
mul1 = (q31_t) ((q15_t) (inA1) * (q15_t) (inB1)); |
|||
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1)); |
|||
mul3 = (q31_t) ((q15_t) (inA2) * (q15_t) (inB1 >> 16)); |
|||
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) (inB1 >> 16)); |
|||
|
|||
#else |
|||
|
|||
mul2 = (q31_t) ((q15_t) (inA1 >> 16) * (q15_t) (inB1 >> 16)); |
|||
mul1 = (q31_t) ((q15_t) inA1 * (q15_t) (inB1 >> 16)); |
|||
mul4 = (q31_t) ((q15_t) (inA2 >> 16) * (q15_t) inB1); |
|||
mul3 = (q31_t) ((q15_t) inA2 * (q15_t) inB1); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
out1 = (q15_t) __SSAT(mul1 >> 15u, 16); |
|||
out2 = (q15_t) __SSAT(mul2 >> 15u, 16); |
|||
out3 = (q15_t) __SSAT(mul3 >> 15u, 16); |
|||
out4 = (q15_t) __SSAT(mul4 >> 15u, 16); |
|||
|
|||
*__SIMD32(pCmplxDst)++ = __PKHBT(out1, out2, 16); |
|||
*__SIMD32(pCmplxDst)++ = __PKHBT(out3, out4, 16); |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[i]. */ |
|||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ |
|||
in = *pSrcReal++; |
|||
/* store the result in the destination buffer. */ |
|||
*pCmplxDst++ = |
|||
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); |
|||
*pCmplxDst++ = |
|||
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
/* realOut = realA * realB. */ |
|||
/* imagOut = imagA * realB. */ |
|||
in = *pSrcReal++; |
|||
/* store the result in the destination buffer. */ |
|||
*pCmplxDst++ = |
|||
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); |
|||
*pCmplxDst++ = |
|||
(q15_t) __SSAT((((q31_t) (*pSrcCmplx++) * (in)) >> 15), 16); |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of CmplxByRealMult group |
|||
*/ |
@ -0,0 +1,223 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cmplx_mult_real_q31.c |
|||
* |
|||
* Description: Q31 complex by real multiplication |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupCmplxMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup CmplxByRealMult |
|||
* @{ |
|||
*/ |
|||
|
|||
|
|||
/** |
|||
* @brief Q31 complex-by-real multiplication |
|||
* @param[in] *pSrcCmplx points to the complex input vector |
|||
* @param[in] *pSrcReal points to the real input vector |
|||
* @param[out] *pCmplxDst points to the complex output vector |
|||
* @param[in] numSamples number of samples in each vector |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function uses saturating arithmetic. |
|||
* Results outside of the allowable Q31 range[0x80000000 0x7FFFFFFF] will be saturated. |
|||
*/ |
|||
|
|||
void arm_cmplx_mult_real_q31( |
|||
q31_t * pSrcCmplx, |
|||
q31_t * pSrcReal, |
|||
q31_t * pCmplxDst, |
|||
uint32_t numSamples) |
|||
{ |
|||
q31_t inA1; /* Temporary variable to store input value */ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
uint32_t blkCnt; /* loop counters */ |
|||
q31_t inA2, inA3, inA4; /* Temporary variables to hold input data */ |
|||
q31_t inB1, inB2; /* Temporary variabels to hold input data */ |
|||
q31_t out1, out2, out3, out4; /* Temporary variables to hold output data */ |
|||
|
|||
/* loop Unrolling */ |
|||
blkCnt = numSamples >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[i]. */ |
|||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ |
|||
/* read real input from complex input buffer */ |
|||
inA1 = *pSrcCmplx++; |
|||
inA2 = *pSrcCmplx++; |
|||
/* read input from real input bufer */ |
|||
inB1 = *pSrcReal++; |
|||
inB2 = *pSrcReal++; |
|||
/* read imaginary input from complex input buffer */ |
|||
inA3 = *pSrcCmplx++; |
|||
inA4 = *pSrcCmplx++; |
|||
|
|||
/* multiply complex input with real input */ |
|||
out1 = ((q63_t) inA1 * inB1) >> 32; |
|||
out2 = ((q63_t) inA2 * inB1) >> 32; |
|||
out3 = ((q63_t) inA3 * inB2) >> 32; |
|||
out4 = ((q63_t) inA4 * inB2) >> 32; |
|||
|
|||
/* sature the result */ |
|||
out1 = __SSAT(out1, 31); |
|||
out2 = __SSAT(out2, 31); |
|||
out3 = __SSAT(out3, 31); |
|||
out4 = __SSAT(out4, 31); |
|||
|
|||
/* get result in 1.31 format */ |
|||
out1 = out1 << 1; |
|||
out2 = out2 << 1; |
|||
out3 = out3 << 1; |
|||
out4 = out4 << 1; |
|||
|
|||
/* store the result to destination buffer */ |
|||
*pCmplxDst++ = out1; |
|||
*pCmplxDst++ = out2; |
|||
*pCmplxDst++ = out3; |
|||
*pCmplxDst++ = out4; |
|||
|
|||
/* read real input from complex input buffer */ |
|||
inA1 = *pSrcCmplx++; |
|||
inA2 = *pSrcCmplx++; |
|||
/* read input from real input bufer */ |
|||
inB1 = *pSrcReal++; |
|||
inB2 = *pSrcReal++; |
|||
/* read imaginary input from complex input buffer */ |
|||
inA3 = *pSrcCmplx++; |
|||
inA4 = *pSrcCmplx++; |
|||
|
|||
/* multiply complex input with real input */ |
|||
out1 = ((q63_t) inA1 * inB1) >> 32; |
|||
out2 = ((q63_t) inA2 * inB1) >> 32; |
|||
out3 = ((q63_t) inA3 * inB2) >> 32; |
|||
out4 = ((q63_t) inA4 * inB2) >> 32; |
|||
|
|||
/* sature the result */ |
|||
out1 = __SSAT(out1, 31); |
|||
out2 = __SSAT(out2, 31); |
|||
out3 = __SSAT(out3, 31); |
|||
out4 = __SSAT(out4, 31); |
|||
|
|||
/* get result in 1.31 format */ |
|||
out1 = out1 << 1; |
|||
out2 = out2 << 1; |
|||
out3 = out3 << 1; |
|||
out4 = out4 << 1; |
|||
|
|||
/* store the result to destination buffer */ |
|||
*pCmplxDst++ = out1; |
|||
*pCmplxDst++ = out2; |
|||
*pCmplxDst++ = out3; |
|||
*pCmplxDst++ = out4; |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the numSamples is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = numSamples % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* C[2 * i] = A[2 * i] * B[i]. */ |
|||
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */ |
|||
/* read real input from complex input buffer */ |
|||
inA1 = *pSrcCmplx++; |
|||
inA2 = *pSrcCmplx++; |
|||
/* read input from real input bufer */ |
|||
inB1 = *pSrcReal++; |
|||
|
|||
/* multiply complex input with real input */ |
|||
out1 = ((q63_t) inA1 * inB1) >> 32; |
|||
out2 = ((q63_t) inA2 * inB1) >> 32; |
|||
|
|||
/* sature the result */ |
|||
out1 = __SSAT(out1, 31); |
|||
out2 = __SSAT(out2, 31); |
|||
|
|||
/* get result in 1.31 format */ |
|||
out1 = out1 << 1; |
|||
out2 = out2 << 1; |
|||
|
|||
/* store the result to destination buffer */ |
|||
*pCmplxDst++ = out1; |
|||
*pCmplxDst++ = out2; |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
while(numSamples > 0u) |
|||
{ |
|||
/* realOut = realA * realB. */ |
|||
/* imagReal = imagA * realB. */ |
|||
inA1 = *pSrcReal++; |
|||
/* store the result in the destination buffer. */ |
|||
*pCmplxDst++ = |
|||
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31); |
|||
*pCmplxDst++ = |
|||
(q31_t) clip_q63_to_q31(((q63_t) * pSrcCmplx++ * inA1) >> 31); |
|||
|
|||
/* Decrement the numSamples loop counter */ |
|||
numSamples--; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of CmplxByRealMult group |
|||
*/ |
@ -0,0 +1,87 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_pid_init_f32.c |
|||
* |
|||
* Description: Floating-point PID Control initialization function |
|||
* |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @addtogroup PID |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Initialization function for the floating-point PID Control. |
|||
* @param[in,out] *S points to an instance of the PID structure. |
|||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state & 1 = reset the state. |
|||
* @return none. |
|||
* \par Description: |
|||
* \par |
|||
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n |
|||
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code> |
|||
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd) |
|||
* also sets the state variables to all zeros. |
|||
*/ |
|||
|
|||
void arm_pid_init_f32( |
|||
arm_pid_instance_f32 * S, |
|||
int32_t resetStateFlag) |
|||
{ |
|||
|
|||
/* Derived coefficient A0 */ |
|||
S->A0 = S->Kp + S->Ki + S->Kd; |
|||
|
|||
/* Derived coefficient A1 */ |
|||
S->A1 = (-S->Kp) - ((float32_t) 2.0 * S->Kd); |
|||
|
|||
/* Derived coefficient A2 */ |
|||
S->A2 = S->Kd; |
|||
|
|||
/* Check whether state needs reset or not */ |
|||
if(resetStateFlag) |
|||
{ |
|||
/* Clear the state buffer. The size will be always 3 samples */ |
|||
memset(S->state, 0, 3u * sizeof(float32_t)); |
|||
} |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of PID group |
|||
*/ |
@ -0,0 +1,122 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_pid_init_q15.c |
|||
* |
|||
* Description: Q15 PID Control initialization function |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @addtogroup PID |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @details |
|||
* @param[in,out] *S points to an instance of the Q15 PID structure. |
|||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
|||
* @return none. |
|||
* \par Description: |
|||
* \par |
|||
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n |
|||
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code> |
|||
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd) |
|||
* also sets the state variables to all zeros. |
|||
*/ |
|||
|
|||
void arm_pid_init_q15( |
|||
arm_pid_instance_q15 * S, |
|||
int32_t resetStateFlag) |
|||
{ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
/* Derived coefficient A0 */ |
|||
S->A0 = __QADD16(__QADD16(S->Kp, S->Ki), S->Kd); |
|||
|
|||
/* Derived coefficients and pack into A1 */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
S->A1 = __PKHBT(-__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), S->Kd, 16); |
|||
|
|||
#else |
|||
|
|||
S->A1 = __PKHBT(S->Kd, -__QADD16(__QADD16(S->Kd, S->Kd), S->Kp), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Check whether state needs reset or not */ |
|||
if(resetStateFlag) |
|||
{ |
|||
/* Clear the state buffer. The size will be always 3 samples */ |
|||
memset(S->state, 0, 3u * sizeof(q15_t)); |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
q31_t temp; /*to store the sum */ |
|||
|
|||
/* Derived coefficient A0 */ |
|||
temp = S->Kp + S->Ki + S->Kd; |
|||
S->A0 = (q15_t) __SSAT(temp, 16); |
|||
|
|||
/* Derived coefficients and pack into A1 */ |
|||
temp = -(S->Kd + S->Kd + S->Kp); |
|||
S->A1 = (q15_t) __SSAT(temp, 16); |
|||
S->A2 = S->Kd; |
|||
|
|||
|
|||
|
|||
/* Check whether state needs reset or not */ |
|||
if(resetStateFlag) |
|||
{ |
|||
/* Clear the state buffer. The size will be always 3 samples */ |
|||
memset(S->state, 0, 3u * sizeof(q15_t)); |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of PID group |
|||
*/ |
@ -0,0 +1,107 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_pid_init_q31.c |
|||
* |
|||
* Description: Q31 PID Control initialization function |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @addtogroup PID |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Initialization function for the Q31 PID Control. |
|||
* @param[in,out] *S points to an instance of the Q31 PID structure. |
|||
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state. |
|||
* @return none. |
|||
* \par Description: |
|||
* \par |
|||
* The <code>resetStateFlag</code> specifies whether to set state to zero or not. \n |
|||
* The function computes the structure fields: <code>A0</code>, <code>A1</code> <code>A2</code> |
|||
* using the proportional gain( \c Kp), integral gain( \c Ki) and derivative gain( \c Kd) |
|||
* also sets the state variables to all zeros. |
|||
*/ |
|||
|
|||
void arm_pid_init_q31( |
|||
arm_pid_instance_q31 * S, |
|||
int32_t resetStateFlag) |
|||
{ |
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
/* Derived coefficient A0 */ |
|||
S->A0 = __QADD(__QADD(S->Kp, S->Ki), S->Kd); |
|||
|
|||
/* Derived coefficient A1 */ |
|||
S->A1 = -__QADD(__QADD(S->Kd, S->Kd), S->Kp); |
|||
|
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
q31_t temp; |
|||
|
|||
/* Derived coefficient A0 */ |
|||
temp = clip_q63_to_q31((q63_t) S->Kp + S->Ki); |
|||
S->A0 = clip_q63_to_q31((q63_t) temp + S->Kd); |
|||
|
|||
/* Derived coefficient A1 */ |
|||
temp = clip_q63_to_q31((q63_t) S->Kd + S->Kd); |
|||
S->A1 = -clip_q63_to_q31((q63_t) temp + S->Kp); |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
/* Derived coefficient A2 */ |
|||
S->A2 = S->Kd; |
|||
|
|||
/* Check whether state needs reset or not */ |
|||
if(resetStateFlag) |
|||
{ |
|||
/* Clear the state buffer. The size will be always 3 samples */ |
|||
memset(S->state, 0, 3u * sizeof(q31_t)); |
|||
} |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of PID group |
|||
*/ |
@ -0,0 +1,65 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_pid_reset_f32.c |
|||
* |
|||
* Description: Floating-point PID Control reset function |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @addtogroup PID |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Reset function for the floating-point PID Control. |
|||
* @param[in] *S Instance pointer of PID control data structure. |
|||
* @return none. |
|||
* \par Description: |
|||
* The function resets the state buffer to zeros. |
|||
*/ |
|||
void arm_pid_reset_f32( |
|||
arm_pid_instance_f32 * S) |
|||
{ |
|||
|
|||
/* Clear the state buffer. The size will be always 3 samples */ |
|||
memset(S->state, 0, 3u * sizeof(float32_t)); |
|||
} |
|||
|
|||
/** |
|||
* @} end of PID group |
|||
*/ |
@ -0,0 +1,64 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_pid_reset_q15.c |
|||
* |
|||
* Description: Q15 PID Control reset function |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @addtogroup PID |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Reset function for the Q15 PID Control. |
|||
* @param[in] *S Instance pointer of PID control data structure. |
|||
* @return none. |
|||
* \par Description: |
|||
* The function resets the state buffer to zeros. |
|||
*/ |
|||
void arm_pid_reset_q15( |
|||
arm_pid_instance_q15 * S) |
|||
{ |
|||
/* Reset state to zero, The size will be always 3 samples */ |
|||
memset(S->state, 0, 3u * sizeof(q15_t)); |
|||
} |
|||
|
|||
/** |
|||
* @} end of PID group |
|||
*/ |
@ -0,0 +1,65 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_pid_reset_q31.c |
|||
* |
|||
* Description: Q31 PID Control reset function |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @addtogroup PID |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Reset function for the Q31 PID Control. |
|||
* @param[in] *S Instance pointer of PID control data structure. |
|||
* @return none. |
|||
* \par Description: |
|||
* The function resets the state buffer to zeros. |
|||
*/ |
|||
void arm_pid_reset_q31( |
|||
arm_pid_instance_q31 * S) |
|||
{ |
|||
|
|||
/* Clear the state buffer. The size will be always 3 samples */ |
|||
memset(S->state, 0, 3u * sizeof(q31_t)); |
|||
} |
|||
|
|||
/** |
|||
* @} end of PID group |
|||
*/ |
@ -0,0 +1,149 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sin_cos_f32.c |
|||
* |
|||
* Description: Sine and Cosine calculation for floating-point values. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
|
|||
/** |
|||
* @ingroup groupController |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup SinCos Sine Cosine |
|||
* |
|||
* Computes the trigonometric sine and cosine values using a combination of table lookup |
|||
* and linear interpolation. |
|||
* There are separate functions for Q31 and floating-point data types. |
|||
* The input to the floating-point version is in degrees while the |
|||
* fixed-point Q31 have a scaled input with the range |
|||
* [-1 0.9999] mapping to [-180 +180] degrees. |
|||
* |
|||
* The floating point function also allows values that are out of the usual range. When this happens, the function will |
|||
* take extra time to adjust the input value to the range of [-180 180]. |
|||
* |
|||
* The implementation is based on table lookup using 360 values together with linear interpolation. |
|||
* The steps used are: |
|||
* -# Calculation of the nearest integer table index. |
|||
* -# Compute the fractional portion (fract) of the input. |
|||
* -# Fetch the value corresponding to \c index from sine table to \c y0 and also value from \c index+1 to \c y1. |
|||
* -# Sine value is computed as <code> *psinVal = y0 + (fract * (y1 - y0))</code>. |
|||
* -# Fetch the value corresponding to \c index from cosine table to \c y0 and also value from \c index+1 to \c y1. |
|||
* -# Cosine value is computed as <code> *pcosVal = y0 + (fract * (y1 - y0))</code>. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup SinCos |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Floating-point sin_cos function. |
|||
* @param[in] theta input value in degrees |
|||
* @param[out] *pSinVal points to the processed sine output. |
|||
* @param[out] *pCosVal points to the processed cos output. |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_sin_cos_f32( |
|||
float32_t theta, |
|||
float32_t * pSinVal, |
|||
float32_t * pCosVal) |
|||
{ |
|||
float32_t fract, in; /* Temporary variables for input, output */ |
|||
uint16_t indexS, indexC; /* Index variable */ |
|||
float32_t f1, f2, d1, d2; /* Two nearest output values */ |
|||
int32_t n; |
|||
float32_t findex, Dn, Df, temp; |
|||
|
|||
/* input x is in degrees */ |
|||
/* Scale the input, divide input by 360, for cosine add 0.25 (pi/2) to read sine table */ |
|||
in = theta * 0.00277777777778f; |
|||
|
|||
/* Calculation of floor value of input */ |
|||
n = (int32_t) in; |
|||
|
|||
/* Make negative values towards -infinity */ |
|||
if(in < 0.0f) |
|||
{ |
|||
n--; |
|||
} |
|||
/* Map input value to [0 1] */ |
|||
in = in - (float32_t) n; |
|||
|
|||
/* Calculation of index of the table */ |
|||
findex = (float32_t) FAST_MATH_TABLE_SIZE * in; |
|||
indexS = ((uint16_t)findex) & 0x1ff; |
|||
indexC = (indexS + (FAST_MATH_TABLE_SIZE / 4)) & 0x1ff; |
|||
|
|||
/* fractional value calculation */ |
|||
fract = findex - (float32_t) indexS; |
|||
|
|||
/* Read two nearest values of input value from the cos & sin tables */ |
|||
f1 = sinTable_f32[indexC+0]; |
|||
f2 = sinTable_f32[indexC+1]; |
|||
d1 = -sinTable_f32[indexS+0]; |
|||
d2 = -sinTable_f32[indexS+1]; |
|||
|
|||
Dn = 0.0122718463030f; // delta between the two points (fixed), in this case 2*pi/FAST_MATH_TABLE_SIZE |
|||
Df = f2 - f1; // delta between the values of the functions |
|||
temp = Dn*(d1 + d2) - 2*Df; |
|||
temp = fract*temp + (3*Df - (d2 + 2*d1)*Dn); |
|||
temp = fract*temp + d1*Dn; |
|||
|
|||
/* Calculation of cosine value */ |
|||
*pCosVal = fract*temp + f1; |
|||
|
|||
/* Read two nearest values of input value from the cos & sin tables */ |
|||
f1 = sinTable_f32[indexS+0]; |
|||
f2 = sinTable_f32[indexS+1]; |
|||
d1 = sinTable_f32[indexC+0]; |
|||
d2 = sinTable_f32[indexC+1]; |
|||
|
|||
Df = f2 - f1; // delta between the values of the functions |
|||
temp = Dn*(d1 + d2) - 2*Df; |
|||
temp = fract*temp + (3*Df - (d2 + 2*d1)*Dn); |
|||
temp = fract*temp + d1*Dn; |
|||
|
|||
/* Calculation of sine value */ |
|||
*pSinVal = fract*temp + f1; |
|||
} |
|||
/** |
|||
* @} end of SinCos group |
|||
*/ |
@ -0,0 +1,122 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sin_cos_q31.c |
|||
* |
|||
* Description: Cosine & Sine calculation for Q31 values. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
|
|||
/** |
|||
* @ingroup groupController |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup SinCos |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q31 sin_cos function. |
|||
* @param[in] theta scaled input value in degrees |
|||
* @param[out] *pSinVal points to the processed sine output. |
|||
* @param[out] *pCosVal points to the processed cosine output. |
|||
* @return none. |
|||
* |
|||
* The Q31 input value is in the range [-1 0.999999] and is mapped to a degree value in the range [-180 179]. |
|||
* |
|||
*/ |
|||
|
|||
void arm_sin_cos_q31( |
|||
q31_t theta, |
|||
q31_t * pSinVal, |
|||
q31_t * pCosVal) |
|||
{ |
|||
q31_t fract; /* Temporary variables for input, output */ |
|||
uint16_t indexS, indexC; /* Index variable */ |
|||
q31_t f1, f2, d1, d2; /* Two nearest output values */ |
|||
q31_t Dn, Df; |
|||
q63_t temp; |
|||
|
|||
/* Calculate the nearest index */ |
|||
indexS = (uint32_t)theta >> CONTROLLER_Q31_SHIFT; |
|||
indexC = (indexS + 128) & 0x1ff; |
|||
|
|||
/* Calculation of fractional value */ |
|||
fract = (theta - (indexS << CONTROLLER_Q31_SHIFT)) << 8; |
|||
|
|||
/* Read two nearest values of input value from the cos & sin tables */ |
|||
f1 = sinTable_q31[indexC+0]; |
|||
f2 = sinTable_q31[indexC+1]; |
|||
d1 = -sinTable_q31[indexS+0]; |
|||
d2 = -sinTable_q31[indexS+1]; |
|||
|
|||
Dn = 0x1921FB5; // delta between the two points (fixed), in this case 2*pi/FAST_MATH_TABLE_SIZE |
|||
Df = f2 - f1; // delta between the values of the functions |
|||
temp = Dn*((q63_t)d1 + d2); |
|||
temp = temp - ((q63_t)Df << 32); |
|||
temp = (q63_t)fract*(temp >> 31); |
|||
temp = temp + ((3*(q63_t)Df << 31) - (d2 + ((q63_t)d1 << 1))*Dn); |
|||
temp = (q63_t)fract*(temp >> 31); |
|||
temp = temp + (q63_t)d1*Dn; |
|||
temp = (q63_t)fract*(temp >> 31); |
|||
|
|||
/* Calculation of cosine value */ |
|||
*pCosVal = clip_q63_to_q31((temp >> 31) + (q63_t)f1); |
|||
|
|||
/* Read two nearest values of input value from the cos & sin tables */ |
|||
f1 = sinTable_q31[indexS+0]; |
|||
f2 = sinTable_q31[indexS+1]; |
|||
d1 = sinTable_q31[indexC+0]; |
|||
d2 = sinTable_q31[indexC+1]; |
|||
|
|||
Df = f2 - f1; // delta between the values of the functions |
|||
temp = Dn*((q63_t)d1 + d2); |
|||
temp = temp - ((q63_t)Df << 32); |
|||
temp = (q63_t)fract*(temp >> 31); |
|||
temp = temp + ((3*(q63_t)Df << 31) - (d2 + ((q63_t)d1 << 1))*Dn); |
|||
temp = (q63_t)fract*(temp >> 31); |
|||
temp = temp + (q63_t)d1*Dn; |
|||
temp = (q63_t)fract*(temp >> 31); |
|||
|
|||
/* Calculation of sine value */ |
|||
*pSinVal = clip_q63_to_q31((temp >> 31) + (q63_t)f1); |
|||
} |
|||
|
|||
/** |
|||
* @} end of SinCos group |
|||
*/ |
@ -0,0 +1,127 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 21. September 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cos_f32.c |
|||
* |
|||
* Description: Fast cosine calculation for floating-point values. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
/** |
|||
* @ingroup groupFastMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup cos Cosine |
|||
* |
|||
* Computes the trigonometric cosine function using a combination of table lookup |
|||
* and linear interpolation. There are separate functions for |
|||
* Q15, Q31, and floating-point data types. |
|||
* The input to the floating-point version is in radians while the |
|||
* fixed-point Q15 and Q31 have a scaled input with the range |
|||
* [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a |
|||
* value of 2*pi wraps around to 0. |
|||
* |
|||
* The implementation is based on table lookup using 256 values together with linear interpolation. |
|||
* The steps used are: |
|||
* -# Calculation of the nearest integer table index |
|||
* -# Compute the fractional portion (fract) of the table index. |
|||
* -# The final result equals <code>(1.0f-fract)*a + fract*b;</code> |
|||
* |
|||
* where |
|||
* <pre> |
|||
* b=Table[index+0]; |
|||
* c=Table[index+1]; |
|||
* </pre> |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cos |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Fast approximation to the trigonometric cosine function for floating-point data. |
|||
* @param[in] x input value in radians. |
|||
* @return cos(x). |
|||
*/ |
|||
|
|||
float32_t arm_cos_f32( |
|||
float32_t x) |
|||
{ |
|||
float32_t cosVal, fract, in; /* Temporary variables for input, output */ |
|||
uint16_t index; /* Index variable */ |
|||
float32_t a, b; /* Two nearest output values */ |
|||
int32_t n; |
|||
float32_t findex; |
|||
|
|||
/* input x is in radians */ |
|||
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi, add 0.25 (pi/2) to read sine table */ |
|||
in = x * 0.159154943092f + 0.25f; |
|||
|
|||
/* Calculation of floor value of input */ |
|||
n = (int32_t) in; |
|||
|
|||
/* Make negative values towards -infinity */ |
|||
if(in < 0.0f) |
|||
{ |
|||
n--; |
|||
} |
|||
|
|||
/* Map input value to [0 1] */ |
|||
in = in - (float32_t) n; |
|||
|
|||
/* Calculation of index of the table */ |
|||
findex = (float32_t) FAST_MATH_TABLE_SIZE * in; |
|||
index = ((uint16_t)findex) & 0x1ff; |
|||
|
|||
/* fractional value calculation */ |
|||
fract = findex - (float32_t) index; |
|||
|
|||
/* Read two nearest values of input value from the cos table */ |
|||
a = sinTable_f32[index]; |
|||
b = sinTable_f32[index+1]; |
|||
|
|||
/* Linear interpolation process */ |
|||
cosVal = (1.0f-fract)*a + fract*b; |
|||
|
|||
/* Return the output value */ |
|||
return (cosVal); |
|||
} |
|||
|
|||
/** |
|||
* @} end of cos group |
|||
*/ |
@ -0,0 +1,96 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 07. September 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cos_q15.c |
|||
* |
|||
* Description: Fast cosine calculation for Q15 values. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
|
|||
/** |
|||
* @ingroup groupFastMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cos |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Fast approximation to the trigonometric cosine function for Q15 data. |
|||
* @param[in] x Scaled input value in radians. |
|||
* @return cos(x). |
|||
* |
|||
* The Q15 input value is in the range [0 +0.9999] and is mapped to a radian |
|||
* value in the range [0 2*pi). |
|||
*/ |
|||
|
|||
q15_t arm_cos_q15( |
|||
q15_t x) |
|||
{ |
|||
q15_t cosVal; /* Temporary variables for input, output */ |
|||
int32_t index; /* Index variables */ |
|||
q15_t a, b; /* Four nearest output values */ |
|||
q15_t fract; /* Temporary values for fractional values */ |
|||
|
|||
/* add 0.25 (pi/2) to read sine table */ |
|||
x = (uint16_t)x + 0x2000; |
|||
if(x < 0) |
|||
{ /* convert negative numbers to corresponding positive ones */ |
|||
x = (uint16_t)x + 0x8000; |
|||
} |
|||
|
|||
/* Calculate the nearest index */ |
|||
index = (uint32_t)x >> FAST_MATH_Q15_SHIFT; |
|||
|
|||
/* Calculation of fractional value */ |
|||
fract = (x - (index << FAST_MATH_Q15_SHIFT)) << 9; |
|||
|
|||
/* Read two nearest values of input value from the sin table */ |
|||
a = sinTable_q15[index]; |
|||
b = sinTable_q15[index+1]; |
|||
|
|||
/* Linear interpolation process */ |
|||
cosVal = (q31_t)(0x8000-fract)*a >> 16; |
|||
cosVal = (q15_t)((((q31_t)cosVal << 16) + ((q31_t)fract*b)) >> 16); |
|||
|
|||
return cosVal << 1; |
|||
} |
|||
|
|||
/** |
|||
* @} end of cos group |
|||
*/ |
@ -0,0 +1,96 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 07. September 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_cos_q31.c |
|||
* |
|||
* Description: Fast cosine calculation for Q31 values. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
|
|||
/** |
|||
* @ingroup groupFastMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup cos |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Fast approximation to the trigonometric cosine function for Q31 data. |
|||
* @param[in] x Scaled input value in radians. |
|||
* @return cos(x). |
|||
* |
|||
* The Q31 input value is in the range [0 +0.9999] and is mapped to a radian |
|||
* value in the range [0 2*pi). |
|||
*/ |
|||
|
|||
q31_t arm_cos_q31( |
|||
q31_t x) |
|||
{ |
|||
q31_t cosVal; /* Temporary variables for input, output */ |
|||
int32_t index; /* Index variables */ |
|||
q31_t a, b; /* Four nearest output values */ |
|||
q31_t fract; /* Temporary values for fractional values */ |
|||
|
|||
/* add 0.25 (pi/2) to read sine table */ |
|||
x = (uint32_t)x + 0x20000000; |
|||
if(x < 0) |
|||
{ /* convert negative numbers to corresponding positive ones */ |
|||
x = (uint32_t)x + 0x80000000; |
|||
} |
|||
|
|||
/* Calculate the nearest index */ |
|||
index = (uint32_t)x >> FAST_MATH_Q31_SHIFT; |
|||
|
|||
/* Calculation of fractional value */ |
|||
fract = (x - (index << FAST_MATH_Q31_SHIFT)) << 9; |
|||
|
|||
/* Read two nearest values of input value from the sin table */ |
|||
a = sinTable_q31[index]; |
|||
b = sinTable_q31[index+1]; |
|||
|
|||
/* Linear interpolation process */ |
|||
cosVal = (q63_t)(0x80000000-fract)*a >> 32; |
|||
cosVal = (q31_t)((((q63_t)cosVal << 32) + ((q63_t)fract*b)) >> 32); |
|||
|
|||
return cosVal << 1; |
|||
} |
|||
|
|||
/** |
|||
* @} end of cos group |
|||
*/ |
@ -0,0 +1,133 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 21. September 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sin_f32.c |
|||
* |
|||
* Description: Fast sine calculation for floating-point values. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
#include <math.h> |
|||
|
|||
/** |
|||
* @ingroup groupFastMath |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup sin Sine |
|||
* |
|||
* Computes the trigonometric sine function using a combination of table lookup |
|||
* and linear interpolation. There are separate functions for |
|||
* Q15, Q31, and floating-point data types. |
|||
* The input to the floating-point version is in radians while the |
|||
* fixed-point Q15 and Q31 have a scaled input with the range |
|||
* [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a |
|||
* value of 2*pi wraps around to 0. |
|||
* |
|||
* The implementation is based on table lookup using 256 values together with linear interpolation. |
|||
* The steps used are: |
|||
* -# Calculation of the nearest integer table index |
|||
* -# Compute the fractional portion (fract) of the table index. |
|||
* -# The final result equals <code>(1.0f-fract)*a + fract*b;</code> |
|||
* |
|||
* where |
|||
* <pre> |
|||
* b=Table[index+0]; |
|||
* c=Table[index+1]; |
|||
* </pre> |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup sin |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Fast approximation to the trigonometric sine function for floating-point data. |
|||
* @param[in] x input value in radians. |
|||
* @return sin(x). |
|||
*/ |
|||
|
|||
float32_t arm_sin_f32( |
|||
float32_t x) |
|||
{ |
|||
float32_t sinVal, fract, in; /* Temporary variables for input, output */ |
|||
uint16_t index; /* Index variable */ |
|||
float32_t a, b; /* Two nearest output values */ |
|||
int32_t n; |
|||
float32_t findex; |
|||
|
|||
/* input x is in radians */ |
|||
/* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */ |
|||
in = x * 0.159154943092f; |
|||
|
|||
/* Calculation of floor value of input */ |
|||
n = (int32_t) in; |
|||
|
|||
/* Make negative values towards -infinity */ |
|||
if(x < 0.0f) |
|||
{ |
|||
n--; |
|||
} |
|||
|
|||
/* Map input value to [0 1] */ |
|||
in = in - (float32_t) n; |
|||
|
|||
/* Calculation of index of the table */ |
|||
findex = (float32_t) FAST_MATH_TABLE_SIZE * in; |
|||
if (findex >= 512.0f) { |
|||
findex -= 512.0f; |
|||
} |
|||
|
|||
index = ((uint16_t)findex) & 0x1ff; |
|||
|
|||
/* fractional value calculation */ |
|||
fract = findex - (float32_t) index; |
|||
|
|||
/* Read two nearest values of input value from the sin table */ |
|||
a = sinTable_f32[index]; |
|||
b = sinTable_f32[index+1]; |
|||
|
|||
/* Linear interpolation process */ |
|||
sinVal = (1.0f-fract)*a + fract*b; |
|||
|
|||
/* Return the output value */ |
|||
return (sinVal); |
|||
} |
|||
|
|||
/** |
|||
* @} end of sin group |
|||
*/ |
@ -0,0 +1,88 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sin_q15.c |
|||
* |
|||
* Description: Fast sine calculation for Q15 values. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
|
|||
/** |
|||
* @ingroup groupFastMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup sin |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Fast approximation to the trigonometric sine function for Q15 data. |
|||
* @param[in] x Scaled input value in radians. |
|||
* @return sin(x). |
|||
* |
|||
* The Q15 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi). |
|||
*/ |
|||
|
|||
q15_t arm_sin_q15( |
|||
q15_t x) |
|||
{ |
|||
q15_t sinVal; /* Temporary variables for input, output */ |
|||
int32_t index; /* Index variables */ |
|||
q15_t a, b; /* Four nearest output values */ |
|||
q15_t fract; /* Temporary values for fractional values */ |
|||
|
|||
/* Calculate the nearest index */ |
|||
index = (uint32_t)x >> FAST_MATH_Q15_SHIFT; |
|||
|
|||
/* Calculation of fractional value */ |
|||
fract = (x - (index << FAST_MATH_Q15_SHIFT)) << 9; |
|||
|
|||
/* Read two nearest values of input value from the sin table */ |
|||
a = sinTable_q15[index]; |
|||
b = sinTable_q15[index+1]; |
|||
|
|||
/* Linear interpolation process */ |
|||
sinVal = (q31_t)(0x8000-fract)*a >> 16; |
|||
sinVal = (q15_t)((((q31_t)sinVal << 16) + ((q31_t)fract*b)) >> 16); |
|||
|
|||
return sinVal << 1; |
|||
} |
|||
|
|||
/** |
|||
* @} end of sin group |
|||
*/ |
@ -0,0 +1,87 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sin_q31.c |
|||
* |
|||
* Description: Fast sine calculation for Q31 values. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
|
|||
/** |
|||
* @ingroup groupFastMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup sin |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Fast approximation to the trigonometric sine function for Q31 data. |
|||
* @param[in] x Scaled input value in radians. |
|||
* @return sin(x). |
|||
* |
|||
* The Q31 input value is in the range [0 +0.9999] and is mapped to a radian value in the range [0 2*pi). */ |
|||
|
|||
q31_t arm_sin_q31( |
|||
q31_t x) |
|||
{ |
|||
q31_t sinVal; /* Temporary variables for input, output */ |
|||
int32_t index; /* Index variables */ |
|||
q31_t a, b; /* Four nearest output values */ |
|||
q31_t fract; /* Temporary values for fractional values */ |
|||
|
|||
/* Calculate the nearest index */ |
|||
index = (uint32_t)x >> FAST_MATH_Q31_SHIFT; |
|||
|
|||
/* Calculation of fractional value */ |
|||
fract = (x - (index << FAST_MATH_Q31_SHIFT)) << 9; |
|||
|
|||
/* Read two nearest values of input value from the sin table */ |
|||
a = sinTable_q31[index]; |
|||
b = sinTable_q31[index+1]; |
|||
|
|||
/* Linear interpolation process */ |
|||
sinVal = (q63_t)(0x80000000-fract)*a >> 32; |
|||
sinVal = (q31_t)((((q63_t)sinVal << 32) + ((q63_t)fract*b)) >> 32); |
|||
|
|||
return sinVal << 1; |
|||
} |
|||
|
|||
/** |
|||
* @} end of sin group |
|||
*/ |
@ -0,0 +1,155 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. October 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sqrt_q15.c |
|||
* |
|||
* Description: Q15 square root function. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
|
|||
|
|||
/** |
|||
* @ingroup groupFastMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup SQRT |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q15 square root function. |
|||
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF. |
|||
* @param[out] *pOut square root of input value. |
|||
* @return The function returns ARM_MATH_SUCCESS if the input value is positive |
|||
* and ARM_MATH_ARGUMENT_ERROR if the input is negative. For |
|||
* negative inputs, the function returns *pOut = 0. |
|||
*/ |
|||
|
|||
arm_status arm_sqrt_q15( |
|||
q15_t in, |
|||
q15_t * pOut) |
|||
{ |
|||
q15_t number, temp1, var1, signBits1, half; |
|||
q31_t bits_val1; |
|||
float32_t temp_float1; |
|||
union |
|||
{ |
|||
q31_t fracval; |
|||
float32_t floatval; |
|||
} tempconv; |
|||
|
|||
number = in; |
|||
|
|||
/* If the input is a positive number then compute the signBits. */ |
|||
if(number > 0) |
|||
{ |
|||
signBits1 = __CLZ(number) - 17; |
|||
|
|||
/* Shift by the number of signBits1 */ |
|||
if((signBits1 % 2) == 0) |
|||
{ |
|||
number = number << signBits1; |
|||
} |
|||
else |
|||
{ |
|||
number = number << (signBits1 - 1); |
|||
} |
|||
|
|||
/* Calculate half value of the number */ |
|||
half = number >> 1; |
|||
/* Store the number for later use */ |
|||
temp1 = number; |
|||
|
|||
/* Convert to float */ |
|||
temp_float1 = number * 3.051757812500000e-005f; |
|||
/*Store as integer */ |
|||
tempconv.floatval = temp_float1; |
|||
bits_val1 = tempconv.fracval; |
|||
/* Subtract the shifted value from the magic number to give intial guess */ |
|||
bits_val1 = 0x5f3759df - (bits_val1 >> 1); /* gives initial guess */ |
|||
/* Store as float */ |
|||
tempconv.fracval = bits_val1; |
|||
temp_float1 = tempconv.floatval; |
|||
/* Convert to integer format */ |
|||
var1 = (q31_t) (temp_float1 * 16384); |
|||
|
|||
/* 1st iteration */ |
|||
var1 = ((q15_t) ((q31_t) var1 * (0x3000 - |
|||
((q15_t) |
|||
((((q15_t) |
|||
(((q31_t) var1 * var1) >> 15)) * |
|||
(q31_t) half) >> 15))) >> 15)) << 2; |
|||
/* 2nd iteration */ |
|||
var1 = ((q15_t) ((q31_t) var1 * (0x3000 - |
|||
((q15_t) |
|||
((((q15_t) |
|||
(((q31_t) var1 * var1) >> 15)) * |
|||
(q31_t) half) >> 15))) >> 15)) << 2; |
|||
/* 3rd iteration */ |
|||
var1 = ((q15_t) ((q31_t) var1 * (0x3000 - |
|||
((q15_t) |
|||
((((q15_t) |
|||
(((q31_t) var1 * var1) >> 15)) * |
|||
(q31_t) half) >> 15))) >> 15)) << 2; |
|||
|
|||
/* Multiply the inverse square root with the original value */ |
|||
var1 = ((q15_t) (((q31_t) temp1 * var1) >> 15)) << 1; |
|||
|
|||
/* Shift the output down accordingly */ |
|||
if((signBits1 % 2) == 0) |
|||
{ |
|||
var1 = var1 >> (signBits1 / 2); |
|||
} |
|||
else |
|||
{ |
|||
var1 = var1 >> ((signBits1 - 1) / 2); |
|||
} |
|||
*pOut = var1; |
|||
|
|||
return (ARM_MATH_SUCCESS); |
|||
} |
|||
/* If the number is a negative number then store zero as its square root value */ |
|||
else |
|||
{ |
|||
*pOut = 0; |
|||
return (ARM_MATH_ARGUMENT_ERROR); |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of SQRT group |
|||
*/ |
@ -0,0 +1,153 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. October 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_sqrt_q31.c |
|||
* |
|||
* Description: Q31 square root function. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
#include "arm_math.h" |
|||
#include "arm_common_tables.h" |
|||
|
|||
/** |
|||
* @ingroup groupFastMath |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup SQRT |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Q31 square root function. |
|||
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF. |
|||
* @param[out] *pOut square root of input value. |
|||
* @return The function returns ARM_MATH_SUCCESS if the input value is positive |
|||
* and ARM_MATH_ARGUMENT_ERROR if the input is negative. For |
|||
* negative inputs, the function returns *pOut = 0. |
|||
*/ |
|||
|
|||
arm_status arm_sqrt_q31( |
|||
q31_t in, |
|||
q31_t * pOut) |
|||
{ |
|||
q31_t number, temp1, bits_val1, var1, signBits1, half; |
|||
float32_t temp_float1; |
|||
union |
|||
{ |
|||
q31_t fracval; |
|||
float32_t floatval; |
|||
} tempconv; |
|||
|
|||
number = in; |
|||
|
|||
/* If the input is a positive number then compute the signBits. */ |
|||
if(number > 0) |
|||
{ |
|||
signBits1 = __CLZ(number) - 1; |
|||
|
|||
/* Shift by the number of signBits1 */ |
|||
if((signBits1 % 2) == 0) |
|||
{ |
|||
number = number << signBits1; |
|||
} |
|||
else |
|||
{ |
|||
number = number << (signBits1 - 1); |
|||
} |
|||
|
|||
/* Calculate half value of the number */ |
|||
half = number >> 1; |
|||
/* Store the number for later use */ |
|||
temp1 = number; |
|||
|
|||
/*Convert to float */ |
|||
temp_float1 = number * 4.6566128731e-010f; |
|||
/*Store as integer */ |
|||
tempconv.floatval = temp_float1; |
|||
bits_val1 = tempconv.fracval; |
|||
/* Subtract the shifted value from the magic number to give intial guess */ |
|||
bits_val1 = 0x5f3759df - (bits_val1 >> 1); /* gives initial guess */ |
|||
/* Store as float */ |
|||
tempconv.fracval = bits_val1; |
|||
temp_float1 = tempconv.floatval; |
|||
/* Convert to integer format */ |
|||
var1 = (q31_t) (temp_float1 * 1073741824); |
|||
|
|||
/* 1st iteration */ |
|||
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 - |
|||
((q31_t) |
|||
((((q31_t) |
|||
(((q63_t) var1 * var1) >> 31)) * |
|||
(q63_t) half) >> 31))) >> 31)) << 2; |
|||
/* 2nd iteration */ |
|||
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 - |
|||
((q31_t) |
|||
((((q31_t) |
|||
(((q63_t) var1 * var1) >> 31)) * |
|||
(q63_t) half) >> 31))) >> 31)) << 2; |
|||
/* 3rd iteration */ |
|||
var1 = ((q31_t) ((q63_t) var1 * (0x30000000 - |
|||
((q31_t) |
|||
((((q31_t) |
|||
(((q63_t) var1 * var1) >> 31)) * |
|||
(q63_t) half) >> 31))) >> 31)) << 2; |
|||
|
|||
/* Multiply the inverse square root with the original value */ |
|||
var1 = ((q31_t) (((q63_t) temp1 * var1) >> 31)) << 1; |
|||
|
|||
/* Shift the output down accordingly */ |
|||
if((signBits1 % 2) == 0) |
|||
{ |
|||
var1 = var1 >> (signBits1 / 2); |
|||
} |
|||
else |
|||
{ |
|||
var1 = var1 >> ((signBits1 - 1) / 2); |
|||
} |
|||
*pOut = var1; |
|||
|
|||
return (ARM_MATH_SUCCESS); |
|||
} |
|||
/* If the number is a negative number then store zero as its square root value */ |
|||
else |
|||
{ |
|||
*pOut = 0; |
|||
return (ARM_MATH_ARGUMENT_ERROR); |
|||
} |
|||
} |
|||
|
|||
/** |
|||
* @} end of SQRT group |
|||
*/ |
@ -0,0 +1,110 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_32x64_init_q31.c |
|||
* |
|||
* Description: High precision Q31 Biquad cascade filter initialization function. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1_32x64 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @details |
|||
* |
|||
* @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure. |
|||
* @param[in] numStages number of 2nd order stages in the filter. |
|||
* @param[in] *pCoeffs points to the filter coefficients. |
|||
* @param[in] *pState points to the state buffer. |
|||
* @param[in] postShift Shift to be applied after the accumulator. Varies according to the coefficients format. |
|||
* @return none |
|||
* |
|||
* <b>Coefficient and State Ordering:</b> |
|||
* |
|||
* \par |
|||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order: |
|||
* <pre> |
|||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...} |
|||
* </pre> |
|||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage, |
|||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage, |
|||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values. |
|||
* |
|||
* \par |
|||
* The <code>pState</code> points to state variables array and size of each state variable is 1.63 format. |
|||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>. |
|||
* The state variables are arranged in the state array as: |
|||
* <pre> |
|||
* {x[n-1], x[n-2], y[n-1], y[n-2]} |
|||
* </pre> |
|||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on. |
|||
* The state array has a total length of <code>4*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
*/ |
|||
|
|||
void arm_biquad_cas_df1_32x64_init_q31( |
|||
arm_biquad_cas_df1_32x64_ins_q31 * S, |
|||
uint8_t numStages, |
|||
q31_t * pCoeffs, |
|||
q63_t * pState, |
|||
uint8_t postShift) |
|||
{ |
|||
/* Assign filter stages */ |
|||
S->numStages = numStages; |
|||
|
|||
/* Assign postShift to be applied to the output */ |
|||
S->postShift = postShift; |
|||
|
|||
/* Assign coefficient pointer */ |
|||
S->pCoeffs = pCoeffs; |
|||
|
|||
/* Clear state buffer and size is always 4 * numStages */ |
|||
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(q63_t)); |
|||
|
|||
/* Assign state pointer */ |
|||
S->pState = pState; |
|||
} |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1_32x64 group |
|||
*/ |
@ -0,0 +1,561 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. October 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_32x64_q31.c |
|||
* |
|||
* Description: High precision Q31 Biquad cascade filter processing function |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup BiquadCascadeDF1_32x64 High Precision Q31 Biquad Cascade Filter |
|||
* |
|||
* This function implements a high precision Biquad cascade filter which operates on |
|||
* Q31 data values. The filter coefficients are in 1.31 format and the state variables |
|||
* are in 1.63 format. The double precision state variables reduce quantization noise |
|||
* in the filter and provide a cleaner output. |
|||
* These filters are particularly useful when implementing filters in which the |
|||
* singularities are close to the unit circle. This is common for low pass or high |
|||
* pass filters with very low cutoff frequencies. |
|||
* |
|||
* The function operates on blocks of input and output data |
|||
* and each call to the function processes <code>blockSize</code> samples through |
|||
* the filter. <code>pSrc</code> and <code>pDst</code> points to input and output arrays |
|||
* containing <code>blockSize</code> Q31 values. |
|||
* |
|||
* \par Algorithm |
|||
* Each Biquad stage implements a second order filter using the difference equation: |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
* </pre> |
|||
* A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage. |
|||
* \image html Biquad.gif "Single Biquad filter stage" |
|||
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients. |
|||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients. |
|||
* Pay careful attention to the sign of the feedback coefficients. |
|||
* Some design tools use the difference equation |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2] |
|||
* </pre> |
|||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library. |
|||
* |
|||
* \par |
|||
* Higher order filters are realized as a cascade of second order sections. |
|||
* <code>numStages</code> refers to the number of second order stages used. |
|||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages. |
|||
* \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages" |
|||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>). |
|||
* |
|||
* \par |
|||
* The <code>pState</code> points to state variables array . |
|||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code> and each state variable in 1.63 format to improve precision. |
|||
* The state variables are arranged in the array as: |
|||
* <pre> |
|||
* {x[n-1], x[n-2], y[n-1], y[n-2]} |
|||
* </pre> |
|||
* |
|||
* \par |
|||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on. |
|||
* The state array has a total length of <code>4*numStages</code> values of data in 1.63 format. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
* |
|||
* \par Instance Structure |
|||
* The coefficients and state variables for a filter are stored together in an instance data structure. |
|||
* A separate instance structure must be defined for each filter. |
|||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared. |
|||
* |
|||
* \par Init Function |
|||
* There is also an associated initialization function which performs the following operations: |
|||
* - Sets the values of the internal structure fields. |
|||
* - Zeros out the values in the state buffer. |
|||
* To do this manually without calling the init function, assign the follow subfields of the instance structure: |
|||
* numStages, pCoeffs, postShift, pState. Also set all of the values in pState to zero. |
|||
* |
|||
* \par |
|||
* Use of the initialization function is optional. |
|||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section. |
|||
* To place an instance structure into a const data section, the instance structure must be manually initialized. |
|||
* Set the values in the state buffer to zeros before static initialization. |
|||
* For example, to statically initialize the filter instance structure use |
|||
* <pre> |
|||
* arm_biquad_cas_df1_32x64_ins_q31 S1 = {numStages, pState, pCoeffs, postShift}; |
|||
* </pre> |
|||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer; |
|||
* <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied which is described in detail below. |
|||
* \par Fixed-Point Behavior |
|||
* Care must be taken while using Biquad Cascade 32x64 filter function. |
|||
* Following issues must be considered: |
|||
* - Scaling of coefficients |
|||
* - Filter gain |
|||
* - Overflow and saturation |
|||
* |
|||
* \par |
|||
* Filter coefficients are represented as fractional values and |
|||
* restricted to lie in the range <code>[-1 +1)</code>. |
|||
* The processing function has an additional scaling parameter <code>postShift</code> |
|||
* which allows the filter coefficients to exceed the range <code>[+1 -1)</code>. |
|||
* At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits. |
|||
* \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator" |
|||
* This essentially scales the filter coefficients by <code>2^postShift</code>. |
|||
* For example, to realize the coefficients |
|||
* <pre> |
|||
* {1.5, -0.8, 1.2, 1.6, -0.9} |
|||
* </pre> |
|||
* set the Coefficient array to: |
|||
* <pre> |
|||
* {0.75, -0.4, 0.6, 0.8, -0.45} |
|||
* </pre> |
|||
* and set <code>postShift=1</code> |
|||
* |
|||
* \par |
|||
* The second thing to keep in mind is the gain through the filter. |
|||
* The frequency response of a Biquad filter is a function of its coefficients. |
|||
* It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies. |
|||
* This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter. |
|||
* To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed. |
|||
* |
|||
* \par |
|||
* The third item to consider is the overflow and saturation behavior of the fixed-point Q31 version. |
|||
* This is described in the function specific documentation below. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1_32x64 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @details |
|||
|
|||
* @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter. |
|||
* @param[in] *pSrc points to the block of input data. |
|||
* @param[out] *pDst points to the block of output data. |
|||
* @param[in] blockSize number of samples to process. |
|||
* @return none. |
|||
* |
|||
* \par |
|||
* The function is implemented using an internal 64-bit accumulator. |
|||
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. |
|||
* Thus, if the accumulator result overflows it wraps around rather than clip. |
|||
* In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25). |
|||
* After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to |
|||
* 1.31 format by discarding the low 32 bits. |
|||
* |
|||
* \par |
|||
* Two related functions are provided in the CMSIS DSP library. |
|||
* <code>arm_biquad_cascade_df1_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q63 accumulator. |
|||
* <code>arm_biquad_cascade_df1_fast_q31()</code> implements a Biquad cascade with 32-bit coefficients and state variables with a Q31 accumulator. |
|||
*/ |
|||
|
|||
void arm_biquad_cas_df1_32x64_q31( |
|||
const arm_biquad_cas_df1_32x64_ins_q31 * S, |
|||
q31_t * pSrc, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
q31_t *pIn = pSrc; /* input pointer initialization */ |
|||
q31_t *pOut = pDst; /* output pointer initialization */ |
|||
q63_t *pState = S->pState; /* state pointer initialization */ |
|||
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */ |
|||
q63_t acc; /* accumulator */ |
|||
q31_t Xn1, Xn2; /* Input Filter state variables */ |
|||
q63_t Yn1, Yn2; /* Output Filter state variables */ |
|||
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */ |
|||
q31_t Xn; /* temporary input */ |
|||
int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */ |
|||
uint32_t sample, stage = S->numStages; /* loop counters */ |
|||
q31_t acc_l, acc_h; /* temporary output */ |
|||
uint32_t uShift = ((uint32_t) S->postShift + 1u); |
|||
uint32_t lShift = 32u - uShift; /* Shift to be applied to the output */ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/* Reading the state values */ |
|||
Xn1 = (q31_t) (pState[0]); |
|||
Xn2 = (q31_t) (pState[1]); |
|||
Yn1 = pState[2]; |
|||
Yn2 = pState[3]; |
|||
|
|||
/* Apply loop unrolling and compute 4 output values simultaneously. */ |
|||
/* The variable acc hold output value that is being computed and |
|||
* stored in the destination buffer |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
|
|||
sample = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
|
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) Xn *b0; |
|||
|
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) Xn1 *b1; |
|||
|
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) Xn2 *b2; |
|||
|
|||
/* acc += a1 * y[n-1] */ |
|||
acc += mult32x64(Yn1, a1); |
|||
|
|||
/* acc += a2 * y[n-2] */ |
|||
acc += mult32x64(Yn2, a2); |
|||
|
|||
/* The result is converted to 1.63 , Yn2 variable is reused */ |
|||
Yn2 = acc << shift; |
|||
|
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Store the output in the destination buffer in 1.31 format. */ |
|||
*pOut = acc_h; |
|||
|
|||
/* Read the second input into Xn2, to reuse the value */ |
|||
Xn2 = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
|
|||
/* acc += b1 * x[n-1] */ |
|||
acc = (q63_t) Xn *b1; |
|||
|
|||
/* acc = b0 * x[n] */ |
|||
acc += (q63_t) Xn2 *b0; |
|||
|
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) Xn1 *b2; |
|||
|
|||
/* acc += a1 * y[n-1] */ |
|||
acc += mult32x64(Yn2, a1); |
|||
|
|||
/* acc += a2 * y[n-2] */ |
|||
acc += mult32x64(Yn1, a2); |
|||
|
|||
/* The result is converted to 1.63, Yn1 variable is reused */ |
|||
Yn1 = acc << shift; |
|||
|
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Read the third input into Xn1, to reuse the value */ |
|||
Xn1 = *pIn++; |
|||
|
|||
/* The result is converted to 1.31 */ |
|||
/* Store the output in the destination buffer. */ |
|||
*(pOut + 1u) = acc_h; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
|
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) Xn1 *b0; |
|||
|
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) Xn2 *b1; |
|||
|
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) Xn *b2; |
|||
|
|||
/* acc += a1 * y[n-1] */ |
|||
acc += mult32x64(Yn1, a1); |
|||
|
|||
/* acc += a2 * y[n-2] */ |
|||
acc += mult32x64(Yn2, a2); |
|||
|
|||
/* The result is converted to 1.63, Yn2 variable is reused */ |
|||
Yn2 = acc << shift; |
|||
|
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Store the output in the destination buffer in 1.31 format. */ |
|||
*(pOut + 2u) = acc_h; |
|||
|
|||
/* Read the fourth input into Xn, to reuse the value */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) Xn *b0; |
|||
|
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) Xn1 *b1; |
|||
|
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) Xn2 *b2; |
|||
|
|||
/* acc += a1 * y[n-1] */ |
|||
acc += mult32x64(Yn2, a1); |
|||
|
|||
/* acc += a2 * y[n-2] */ |
|||
acc += mult32x64(Yn1, a2); |
|||
|
|||
/* The result is converted to 1.63, Yn1 variable is reused */ |
|||
Yn1 = acc << shift; |
|||
|
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Store the output in the destination buffer in 1.31 format. */ |
|||
*(pOut + 3u) = acc_h; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
|
|||
/* update output pointer */ |
|||
pOut += 4u; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
sample = (blockSize & 0x3u); |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
|
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) Xn *b0; |
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) Xn1 *b1; |
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) Xn2 *b2; |
|||
/* acc += a1 * y[n-1] */ |
|||
acc += mult32x64(Yn1, a1); |
|||
/* acc += a2 * y[n-2] */ |
|||
acc += mult32x64(Yn2, a2); |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
Yn2 = Yn1; |
|||
/* The result is converted to 1.63, Yn1 variable is reused */ |
|||
Yn1 = acc << shift; |
|||
|
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Store the output in the destination buffer in 1.31 format. */ |
|||
*pOut++ = acc_h; |
|||
/* Yn1 = acc << shift; */ |
|||
|
|||
/* Store the output in the destination buffer in 1.31 format. */ |
|||
/* *pOut++ = (q31_t) (acc >> (32 - shift)); */ |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* The first stage output is given as input to the second stage. */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset to destination buffer working pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* Store the updated state variables back into the pState array */ |
|||
/* Store the updated state variables back into the pState array */ |
|||
*pState++ = (q63_t) Xn1; |
|||
*pState++ = (q63_t) Xn2; |
|||
*pState++ = Yn1; |
|||
*pState++ = Yn2; |
|||
|
|||
} while(--stage); |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/* Reading the state values */ |
|||
Xn1 = pState[0]; |
|||
Xn2 = pState[1]; |
|||
Yn1 = pState[2]; |
|||
Yn2 = pState[3]; |
|||
|
|||
/* The variable acc hold output value that is being computed and |
|||
* stored in the destination buffer |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
|
|||
sample = blockSize; |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) Xn *b0; |
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) Xn1 *b1; |
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) Xn2 *b2; |
|||
/* acc += a1 * y[n-1] */ |
|||
acc += mult32x64(Yn1, a1); |
|||
/* acc += a2 * y[n-2] */ |
|||
acc += mult32x64(Yn2, a2); |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
Yn2 = Yn1; |
|||
|
|||
/* The result is converted to 1.63, Yn1 variable is reused */ |
|||
Yn1 = acc << shift; |
|||
|
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
acc_h = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Store the output in the destination buffer in 1.31 format. */ |
|||
*pOut++ = acc_h; |
|||
|
|||
/* Yn1 = acc << shift; */ |
|||
|
|||
/* Store the output in the destination buffer in 1.31 format. */ |
|||
/* *pOut++ = (q31_t) (acc >> (32 - shift)); */ |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* The first stage output is given as input to the second stage. */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset to destination buffer working pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* Store the updated state variables back into the pState array */ |
|||
*pState++ = (q63_t) Xn1; |
|||
*pState++ = (q63_t) Xn2; |
|||
*pState++ = Yn1; |
|||
*pState++ = Yn2; |
|||
|
|||
} while(--stage); |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
} |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1_32x64 group |
|||
*/ |
@ -0,0 +1,425 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_f32.c |
|||
* |
|||
* Description: Processing function for the |
|||
* floating-point Biquad cascade DirectFormI(DF1) filter. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup BiquadCascadeDF1 Biquad Cascade IIR Filters Using Direct Form I Structure |
|||
* |
|||
* This set of functions implements arbitrary order recursive (IIR) filters. |
|||
* The filters are implemented as a cascade of second order Biquad sections. |
|||
* The functions support Q15, Q31 and floating-point data types. |
|||
* Fast version of Q15 and Q31 also supported on CortexM4 and Cortex-M3. |
|||
* |
|||
* The functions operate on blocks of input and output data and each call to the function |
|||
* processes <code>blockSize</code> samples through the filter. |
|||
* <code>pSrc</code> points to the array of input data and |
|||
* <code>pDst</code> points to the array of output data. |
|||
* Both arrays contain <code>blockSize</code> values. |
|||
* |
|||
* \par Algorithm |
|||
* Each Biquad stage implements a second order filter using the difference equation: |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
* </pre> |
|||
* A Direct Form I algorithm is used with 5 coefficients and 4 state variables per stage. |
|||
* \image html Biquad.gif "Single Biquad filter stage" |
|||
* Coefficients <code>b0, b1 and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients. |
|||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients. |
|||
* Pay careful attention to the sign of the feedback coefficients. |
|||
* Some design tools use the difference equation |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] - a1 * y[n-1] - a2 * y[n-2] |
|||
* </pre> |
|||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library. |
|||
* |
|||
* \par |
|||
* Higher order filters are realized as a cascade of second order sections. |
|||
* <code>numStages</code> refers to the number of second order stages used. |
|||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages. |
|||
* \image html BiquadCascade.gif "8th order filter using a cascade of Biquad stages" |
|||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>). |
|||
* |
|||
* \par |
|||
* The <code>pState</code> points to state variables array. |
|||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>. |
|||
* The state variables are arranged in the <code>pState</code> array as: |
|||
* <pre> |
|||
* {x[n-1], x[n-2], y[n-1], y[n-2]} |
|||
* </pre> |
|||
* |
|||
* \par |
|||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on. |
|||
* The state array has a total length of <code>4*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed, the coefficients are untouched. |
|||
* |
|||
* \par Instance Structure |
|||
* The coefficients and state variables for a filter are stored together in an instance data structure. |
|||
* A separate instance structure must be defined for each filter. |
|||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared. |
|||
* There are separate instance structure declarations for each of the 3 supported data types. |
|||
* |
|||
* \par Init Functions |
|||
* There is also an associated initialization function for each data type. |
|||
* The initialization function performs following operations: |
|||
* - Sets the values of the internal structure fields. |
|||
* - Zeros out the values in the state buffer. |
|||
* To do this manually without calling the init function, assign the follow subfields of the instance structure: |
|||
* numStages, pCoeffs, pState. Also set all of the values in pState to zero. |
|||
* |
|||
* \par |
|||
* Use of the initialization function is optional. |
|||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section. |
|||
* To place an instance structure into a const data section, the instance structure must be manually initialized. |
|||
* Set the values in the state buffer to zeros before static initialization. |
|||
* The code below statically initializes each of the 3 different data type filter instance structures |
|||
* <pre> |
|||
* arm_biquad_casd_df1_inst_f32 S1 = {numStages, pState, pCoeffs}; |
|||
* arm_biquad_casd_df1_inst_q15 S2 = {numStages, pState, pCoeffs, postShift}; |
|||
* arm_biquad_casd_df1_inst_q31 S3 = {numStages, pState, pCoeffs, postShift}; |
|||
* </pre> |
|||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer; |
|||
* <code>pCoeffs</code> is the address of the coefficient buffer; <code>postShift</code> shift to be applied. |
|||
* |
|||
* \par Fixed-Point Behavior |
|||
* Care must be taken when using the Q15 and Q31 versions of the Biquad Cascade filter functions. |
|||
* Following issues must be considered: |
|||
* - Scaling of coefficients |
|||
* - Filter gain |
|||
* - Overflow and saturation |
|||
* |
|||
* \par |
|||
* <b>Scaling of coefficients: </b> |
|||
* Filter coefficients are represented as fractional values and |
|||
* coefficients are restricted to lie in the range <code>[-1 +1)</code>. |
|||
* The fixed-point functions have an additional scaling parameter <code>postShift</code> |
|||
* which allow the filter coefficients to exceed the range <code>[+1 -1)</code>. |
|||
* At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits. |
|||
* \image html BiquadPostshift.gif "Fixed-point Biquad with shift by postShift bits after accumulator" |
|||
* This essentially scales the filter coefficients by <code>2^postShift</code>. |
|||
* For example, to realize the coefficients |
|||
* <pre> |
|||
* {1.5, -0.8, 1.2, 1.6, -0.9} |
|||
* </pre> |
|||
* set the pCoeffs array to: |
|||
* <pre> |
|||
* {0.75, -0.4, 0.6, 0.8, -0.45} |
|||
* </pre> |
|||
* and set <code>postShift=1</code> |
|||
* |
|||
* \par |
|||
* <b>Filter gain: </b> |
|||
* The frequency response of a Biquad filter is a function of its coefficients. |
|||
* It is possible for the gain through the filter to exceed 1.0 meaning that the filter increases the amplitude of certain frequencies. |
|||
* This means that an input signal with amplitude < 1.0 may result in an output > 1.0 and these are saturated or overflowed based on the implementation of the filter. |
|||
* To avoid this behavior the filter needs to be scaled down such that its peak gain < 1.0 or the input signal must be scaled down so that the combination of input and filter are never overflowed. |
|||
* |
|||
* \par |
|||
* <b>Overflow and saturation: </b> |
|||
* For Q15 and Q31 versions, it is described separately as part of the function specific documentation below. |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @param[in] *S points to an instance of the floating-point Biquad cascade structure. |
|||
* @param[in] *pSrc points to the block of input data. |
|||
* @param[out] *pDst points to the block of output data. |
|||
* @param[in] blockSize number of samples to process per call. |
|||
* @return none. |
|||
* |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df1_f32( |
|||
const arm_biquad_casd_df1_inst_f32 * S, |
|||
float32_t * pSrc, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
float32_t *pIn = pSrc; /* source pointer */ |
|||
float32_t *pOut = pDst; /* destination pointer */ |
|||
float32_t *pState = S->pState; /* pState pointer */ |
|||
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */ |
|||
float32_t acc; /* Simulates the accumulator */ |
|||
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */ |
|||
float32_t Xn1, Xn2, Yn1, Yn2; /* Filter pState variables */ |
|||
float32_t Xn; /* temporary input */ |
|||
uint32_t sample, stage = S->numStages; /* loop counters */ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/* Reading the pState values */ |
|||
Xn1 = pState[0]; |
|||
Xn2 = pState[1]; |
|||
Yn1 = pState[2]; |
|||
Yn2 = pState[3]; |
|||
|
|||
/* Apply loop unrolling and compute 4 output values simultaneously. */ |
|||
/* The variable acc hold output values that are being computed: |
|||
* |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
|
|||
sample = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the first input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
Yn2 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2); |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = Yn2; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
|
|||
/* Read the second input */ |
|||
Xn2 = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
Yn1 = (b0 * Xn2) + (b1 * Xn) + (b2 * Xn1) + (a1 * Yn2) + (a2 * Yn1); |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = Yn1; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
|
|||
/* Read the third input */ |
|||
Xn1 = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
Yn2 = (b0 * Xn1) + (b1 * Xn2) + (b2 * Xn) + (a1 * Yn1) + (a2 * Yn2); |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = Yn2; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
|
|||
/* Read the forth input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
Yn1 = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn2) + (a2 * Yn1); |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = Yn1; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
|
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
sample = blockSize & 0x3u; |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2); |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = acc; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
Yn2 = Yn1; |
|||
Yn1 = acc; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
|
|||
} |
|||
|
|||
/* Store the updated state variables back into the pState array */ |
|||
*pState++ = Xn1; |
|||
*pState++ = Xn2; |
|||
*pState++ = Yn1; |
|||
*pState++ = Yn2; |
|||
|
|||
/* The first stage goes from the input buffer to the output buffer. */ |
|||
/* Subsequent numStages occur in-place in the output buffer */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset the output pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/* Reading the pState values */ |
|||
Xn1 = pState[0]; |
|||
Xn2 = pState[1]; |
|||
Yn1 = pState[2]; |
|||
Yn2 = pState[3]; |
|||
|
|||
/* The variables acc holds the output value that is computed: |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
|
|||
sample = blockSize; |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
acc = (b0 * Xn) + (b1 * Xn1) + (b2 * Xn2) + (a1 * Yn1) + (a2 * Yn2); |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = acc; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
Yn2 = Yn1; |
|||
Yn1 = acc; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the pState array */ |
|||
*pState++ = Xn1; |
|||
*pState++ = Xn2; |
|||
*pState++ = Yn1; |
|||
*pState++ = Yn2; |
|||
|
|||
/* The first stage goes from the input buffer to the output buffer. */ |
|||
/* Subsequent numStages occur in-place in the output buffer */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset the output pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1 group |
|||
*/ |
@ -0,0 +1,286 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_fast_q15.c |
|||
* |
|||
* Description: Fast processing function for the |
|||
* Q15 Biquad cascade filter. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @details |
|||
* @param[in] *S points to an instance of the Q15 Biquad cascade structure. |
|||
* @param[in] *pSrc points to the block of input data. |
|||
* @param[out] *pDst points to the block of output data. |
|||
* @param[in] blockSize number of samples to process per call. |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* This fast version uses a 32-bit accumulator with 2.30 format. |
|||
* The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit. |
|||
* Thus, if the accumulator result overflows it wraps around and distorts the result. |
|||
* In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). |
|||
* The 2.30 accumulator is then shifted by <code>postShift</code> bits and the result truncated to 1.15 format by discarding the low 16 bits. |
|||
* |
|||
* \par |
|||
* Refer to the function <code>arm_biquad_cascade_df1_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. Both the slow and the fast versions use the same instance structure. |
|||
* Use the function <code>arm_biquad_cascade_df1_init_q15()</code> to initialize the filter structure. |
|||
* |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df1_fast_q15( |
|||
const arm_biquad_casd_df1_inst_q15 * S, |
|||
q15_t * pSrc, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
q15_t *pIn = pSrc; /* Source pointer */ |
|||
q15_t *pOut = pDst; /* Destination pointer */ |
|||
q31_t in; /* Temporary variable to hold input value */ |
|||
q31_t out; /* Temporary variable to hold output value */ |
|||
q31_t b0; /* Temporary variable to hold bo value */ |
|||
q31_t b1, a1; /* Filter coefficients */ |
|||
q31_t state_in, state_out; /* Filter state variables */ |
|||
q31_t acc; /* Accumulator */ |
|||
int32_t shift = (int32_t) (15 - S->postShift); /* Post shift */ |
|||
q15_t *pState = S->pState; /* State pointer */ |
|||
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ |
|||
uint32_t sample, stage = S->numStages; /* Stage loop counter */ |
|||
|
|||
|
|||
|
|||
do |
|||
{ |
|||
|
|||
/* Read the b0 and 0 coefficients using SIMD */ |
|||
b0 = *__SIMD32(pCoeffs)++; |
|||
|
|||
/* Read the b1 and b2 coefficients using SIMD */ |
|||
b1 = *__SIMD32(pCoeffs)++; |
|||
|
|||
/* Read the a1 and a2 coefficients using SIMD */ |
|||
a1 = *__SIMD32(pCoeffs)++; |
|||
|
|||
/* Read the input state values from the state buffer: x[n-1], x[n-2] */ |
|||
state_in = *__SIMD32(pState)++; |
|||
|
|||
/* Read the output state values from the state buffer: y[n-1], y[n-2] */ |
|||
state_out = *__SIMD32(pState)--; |
|||
|
|||
/* Apply loop unrolling and compute 2 output values simultaneously. */ |
|||
/* The variable acc hold output values that are being computed: |
|||
* |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
sample = blockSize >> 1u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 2 outputs at a time. |
|||
** a second loop below computes the remaining 1 sample. */ |
|||
while(sample > 0u) |
|||
{ |
|||
|
|||
/* Read the input */ |
|||
in = *__SIMD32(pIn)++; |
|||
|
|||
/* out = b0 * x[n] + 0 * 0 */ |
|||
out = __SMUAD(b0, in); |
|||
/* acc = b1 * x[n-1] + acc += b2 * x[n-2] + out */ |
|||
acc = __SMLAD(b1, state_in, out); |
|||
/* acc += a1 * y[n-1] + acc += a2 * y[n-2] */ |
|||
acc = __SMLAD(a1, state_out, acc); |
|||
|
|||
/* The result is converted from 3.29 to 1.31 and then saturation is applied */ |
|||
out = __SSAT((acc >> shift), 16); |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ |
|||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
state_in = __PKHBT(in, state_in, 16); |
|||
state_out = __PKHBT(out, state_out, 16); |
|||
|
|||
#else |
|||
|
|||
state_in = __PKHBT(state_in >> 16, (in >> 16), 16); |
|||
state_out = __PKHBT(state_out >> 16, (out), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* out = b0 * x[n] + 0 * 0 */ |
|||
out = __SMUADX(b0, in); |
|||
/* acc0 = b1 * x[n-1] , acc0 += b2 * x[n-2] + out */ |
|||
acc = __SMLAD(b1, state_in, out); |
|||
/* acc += a1 * y[n-1] + acc += a2 * y[n-2] */ |
|||
acc = __SMLAD(a1, state_out, acc); |
|||
|
|||
/* The result is converted from 3.29 to 1.31 and then saturation is applied */ |
|||
out = __SSAT((acc >> shift), 16); |
|||
|
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pOut)++ = __PKHBT(state_out, out, 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ |
|||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
state_in = __PKHBT(in >> 16, state_in, 16); |
|||
state_out = __PKHBT(out, state_out, 16); |
|||
|
|||
#else |
|||
|
|||
state_in = __PKHBT(state_in >> 16, in, 16); |
|||
state_out = __PKHBT(state_out >> 16, out, 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
sample--; |
|||
|
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 2, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
|
|||
if((blockSize & 0x1u) != 0u) |
|||
{ |
|||
/* Read the input */ |
|||
in = *pIn++; |
|||
|
|||
/* out = b0 * x[n] + 0 * 0 */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
out = __SMUAD(b0, in); |
|||
|
|||
#else |
|||
|
|||
out = __SMUADX(b0, in); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* acc = b1 * x[n-1], acc += b2 * x[n-2] + out */ |
|||
acc = __SMLAD(b1, state_in, out); |
|||
/* acc += a1 * y[n-1] + acc += a2 * y[n-2] */ |
|||
acc = __SMLAD(a1, state_out, acc); |
|||
|
|||
/* The result is converted from 3.29 to 1.31 and then saturation is applied */ |
|||
out = __SSAT((acc >> shift), 16); |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = (q15_t) out; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ |
|||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
state_in = __PKHBT(in, state_in, 16); |
|||
state_out = __PKHBT(out, state_out, 16); |
|||
|
|||
#else |
|||
|
|||
state_in = __PKHBT(state_in >> 16, in, 16); |
|||
state_out = __PKHBT(state_out >> 16, out, 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
} |
|||
|
|||
/* The first stage goes from the input buffer to the output buffer. */ |
|||
/* Subsequent (numStages - 1) occur in-place in the output buffer */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset the output pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
*__SIMD32(pState)++ = state_in; |
|||
*__SIMD32(pState)++ = state_out; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
} |
|||
|
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1 group |
|||
*/ |
@ -0,0 +1,305 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. October 2015 |
|||
* $Revision: V.1.4.5 a |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_fast_q31.c |
|||
* |
|||
* Description: Processing function for the |
|||
* Q31 Fast Biquad cascade DirectFormI(DF1) filter. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @details |
|||
* |
|||
* @param[in] *S points to an instance of the Q31 Biquad cascade structure. |
|||
* @param[in] *pSrc points to the block of input data. |
|||
* @param[out] *pDst points to the block of output data. |
|||
* @param[in] blockSize number of samples to process per call. |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* This function is optimized for speed at the expense of fixed-point precision and overflow protection. |
|||
* The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. |
|||
* These intermediate results are added to a 2.30 accumulator. |
|||
* Finally, the accumulator is saturated and converted to a 1.31 result. |
|||
* The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result. |
|||
* In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25). Use the intialization function |
|||
* arm_biquad_cascade_df1_init_q31() to initialize filter structure. |
|||
* |
|||
* \par |
|||
* Refer to the function <code>arm_biquad_cascade_df1_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. Both the slow and the fast versions use the same instance structure. |
|||
* Use the function <code>arm_biquad_cascade_df1_init_q31()</code> to initialize the filter structure. |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df1_fast_q31( |
|||
const arm_biquad_casd_df1_inst_q31 * S, |
|||
q31_t * pSrc, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
q31_t acc = 0; /* accumulator */ |
|||
q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */ |
|||
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */ |
|||
q31_t *pIn = pSrc; /* input pointer initialization */ |
|||
q31_t *pOut = pDst; /* output pointer initialization */ |
|||
q31_t *pState = S->pState; /* pState pointer initialization */ |
|||
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */ |
|||
q31_t Xn; /* temporary input */ |
|||
int32_t shift = (int32_t) S->postShift + 1; /* Shift to be applied to the output */ |
|||
uint32_t sample, stage = S->numStages; /* loop counters */ |
|||
|
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/* Reading the state values */ |
|||
Xn1 = pState[0]; |
|||
Xn2 = pState[1]; |
|||
Yn1 = pState[2]; |
|||
Yn2 = pState[3]; |
|||
|
|||
/* Apply loop unrolling and compute 4 output values simultaneously. */ |
|||
/* The variables acc ... acc3 hold output values that are being computed: |
|||
* |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
|
|||
sample = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
/* acc = b0 * x[n] */ |
|||
/*acc = (q31_t) (((q63_t) b1 * Xn1) >> 32);*/ |
|||
mult_32x32_keep32_R(acc, b1, Xn1); |
|||
/* acc += b1 * x[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b0 * (Xn))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b0, Xn); |
|||
/* acc += b[2] * x[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b2, Xn2); |
|||
/* acc += a1 * y[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a1, Yn1); |
|||
/* acc += a2 * y[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a2, Yn2); |
|||
|
|||
/* The result is converted to 1.31 , Yn2 variable is reused */ |
|||
Yn2 = acc << shift; |
|||
|
|||
/* Read the second input */ |
|||
Xn2 = *(pIn + 1u); |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut = Yn2; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
/* acc = b0 * x[n] */ |
|||
/*acc = (q31_t) (((q63_t) b0 * (Xn2)) >> 32);*/ |
|||
mult_32x32_keep32_R(acc, b0, Xn2); |
|||
/* acc += b1 * x[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b1, Xn); |
|||
/* acc += b[2] * x[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn1))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b2, Xn1); |
|||
/* acc += a1 * y[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a1, Yn2); |
|||
/* acc += a2 * y[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a2, Yn1); |
|||
|
|||
/* The result is converted to 1.31, Yn1 variable is reused */ |
|||
Yn1 = acc << shift; |
|||
|
|||
/* Read the third input */ |
|||
Xn1 = *(pIn + 2u); |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*(pOut + 1u) = Yn1; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
/* acc = b0 * x[n] */ |
|||
/*acc = (q31_t) (((q63_t) b0 * (Xn1)) >> 32);*/ |
|||
mult_32x32_keep32_R(acc, b0, Xn1); |
|||
/* acc += b1 * x[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn2))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b1, Xn2); |
|||
/* acc += b[2] * x[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b2, Xn); |
|||
/* acc += a1 * y[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a1, Yn1); |
|||
/* acc += a2 * y[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a2, Yn2); |
|||
|
|||
/* The result is converted to 1.31, Yn2 variable is reused */ |
|||
Yn2 = acc << shift; |
|||
|
|||
/* Read the forth input */ |
|||
Xn = *(pIn + 3u); |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*(pOut + 2u) = Yn2; |
|||
pIn += 4u; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
/* acc = b0 * x[n] */ |
|||
/*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/ |
|||
mult_32x32_keep32_R(acc, b0, Xn); |
|||
/* acc += b1 * x[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b1, Xn1); |
|||
/* acc += b[2] * x[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b2, Xn2); |
|||
/* acc += a1 * y[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn2))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a1, Yn2); |
|||
/* acc += a2 * y[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn1))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a2, Yn1); |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
Xn2 = Xn1; |
|||
|
|||
/* The result is converted to 1.31, Yn1 variable is reused */ |
|||
Yn1 = acc << shift; |
|||
|
|||
/* Xn1 = Xn */ |
|||
Xn1 = Xn; |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*(pOut + 3u) = Yn1; |
|||
pOut += 4u; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
sample = (blockSize & 0x3u); |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
/* acc = b0 * x[n] */ |
|||
/*acc = (q31_t) (((q63_t) b0 * (Xn)) >> 32);*/ |
|||
mult_32x32_keep32_R(acc, b0, Xn); |
|||
/* acc += b1 * x[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b1 * (Xn1))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b1, Xn1); |
|||
/* acc += b[2] * x[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) b2 * (Xn2))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, b2, Xn2); |
|||
/* acc += a1 * y[n-1] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a1 * (Yn1))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a1, Yn1); |
|||
/* acc += a2 * y[n-2] */ |
|||
/*acc = (q31_t) ((((q63_t) acc << 32) + ((q63_t) a2 * (Yn2))) >> 32);*/ |
|||
multAcc_32x32_keep32_R(acc, a2, Yn2); |
|||
|
|||
/* The result is converted to 1.31 */ |
|||
acc = acc << shift; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
Yn2 = Yn1; |
|||
Yn1 = acc; |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = acc; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* The first stage goes from the input buffer to the output buffer. */ |
|||
/* Subsequent stages occur in-place in the output buffer */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset to destination pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* Store the updated state variables back into the pState array */ |
|||
*pState++ = Xn1; |
|||
*pState++ = Xn2; |
|||
*pState++ = Yn1; |
|||
*pState++ = Yn2; |
|||
|
|||
} while(--stage); |
|||
} |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1 group |
|||
*/ |
@ -0,0 +1,109 @@ |
|||
/*----------------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_init_f32.c |
|||
* |
|||
* Description: floating-point Biquad cascade DirectFormI(DF1) filter initialization function. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------*/ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @details |
|||
* @brief Initialization function for the floating-point Biquad cascade filter. |
|||
* @param[in,out] *S points to an instance of the floating-point Biquad cascade structure. |
|||
* @param[in] numStages number of 2nd order stages in the filter. |
|||
* @param[in] *pCoeffs points to the filter coefficients array. |
|||
* @param[in] *pState points to the state array. |
|||
* @return none |
|||
* |
|||
* |
|||
* <b>Coefficient and State Ordering:</b> |
|||
* |
|||
* \par |
|||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order: |
|||
* <pre> |
|||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...} |
|||
* </pre> |
|||
* |
|||
* \par |
|||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage, |
|||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage, |
|||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values. |
|||
* |
|||
* \par |
|||
* The <code>pState</code> is a pointer to state array. |
|||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>. |
|||
* The state variables are arranged in the <code>pState</code> array as: |
|||
* <pre> |
|||
* {x[n-1], x[n-2], y[n-1], y[n-2]} |
|||
* </pre> |
|||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on. |
|||
* The state array has a total length of <code>4*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
* |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df1_init_f32( |
|||
arm_biquad_casd_df1_inst_f32 * S, |
|||
uint8_t numStages, |
|||
float32_t * pCoeffs, |
|||
float32_t * pState) |
|||
{ |
|||
/* Assign filter stages */ |
|||
S->numStages = numStages; |
|||
|
|||
/* Assign coefficient pointer */ |
|||
S->pCoeffs = pCoeffs; |
|||
|
|||
/* Clear state buffer and size is always 4 * numStages */ |
|||
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(float32_t)); |
|||
|
|||
/* Assign state pointer */ |
|||
S->pState = pState; |
|||
} |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1 group |
|||
*/ |
@ -0,0 +1,111 @@ |
|||
/*----------------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_init_q15.c |
|||
* |
|||
* Description: Q15 Biquad cascade DirectFormI(DF1) filter initialization function. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------*/ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @details |
|||
* |
|||
* @param[in,out] *S points to an instance of the Q15 Biquad cascade structure. |
|||
* @param[in] numStages number of 2nd order stages in the filter. |
|||
* @param[in] *pCoeffs points to the filter coefficients. |
|||
* @param[in] *pState points to the state buffer. |
|||
* @param[in] postShift Shift to be applied to the accumulator result. Varies according to the coefficients format |
|||
* @return none |
|||
* |
|||
* <b>Coefficient and State Ordering:</b> |
|||
* |
|||
* \par |
|||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order: |
|||
* <pre> |
|||
* {b10, 0, b11, b12, a11, a12, b20, 0, b21, b22, a21, a22, ...} |
|||
* </pre> |
|||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage, |
|||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage, |
|||
* and so on. The <code>pCoeffs</code> array contains a total of <code>6*numStages</code> values. |
|||
* The zero coefficient between <code>b1</code> and <code>b2</code> facilities use of 16-bit SIMD instructions on the Cortex-M4. |
|||
* |
|||
* \par |
|||
* The state variables are stored in the array <code>pState</code>. |
|||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>. |
|||
* The state variables are arranged in the <code>pState</code> array as: |
|||
* <pre> |
|||
* {x[n-1], x[n-2], y[n-1], y[n-2]} |
|||
* </pre> |
|||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on. |
|||
* The state array has a total length of <code>4*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df1_init_q15( |
|||
arm_biquad_casd_df1_inst_q15 * S, |
|||
uint8_t numStages, |
|||
q15_t * pCoeffs, |
|||
q15_t * pState, |
|||
int8_t postShift) |
|||
{ |
|||
/* Assign filter stages */ |
|||
S->numStages = numStages; |
|||
|
|||
/* Assign postShift to be applied to the output */ |
|||
S->postShift = postShift; |
|||
|
|||
/* Assign coefficient pointer */ |
|||
S->pCoeffs = pCoeffs; |
|||
|
|||
/* Clear state buffer and size is always 4 * numStages */ |
|||
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(q15_t)); |
|||
|
|||
/* Assign state pointer */ |
|||
S->pState = pState; |
|||
} |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1 group |
|||
*/ |
@ -0,0 +1,111 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_init_q31.c |
|||
* |
|||
* Description: Q31 Biquad cascade DirectFormI(DF1) filter initialization function. |
|||
* |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @details |
|||
* |
|||
* @param[in,out] *S points to an instance of the Q31 Biquad cascade structure. |
|||
* @param[in] numStages number of 2nd order stages in the filter. |
|||
* @param[in] *pCoeffs points to the filter coefficients buffer. |
|||
* @param[in] *pState points to the state buffer. |
|||
* @param[in] postShift Shift to be applied after the accumulator. Varies according to the coefficients format |
|||
* @return none |
|||
* |
|||
* <b>Coefficient and State Ordering:</b> |
|||
* |
|||
* \par |
|||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order: |
|||
* <pre> |
|||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...} |
|||
* </pre> |
|||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage, |
|||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage, |
|||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values. |
|||
* |
|||
* \par |
|||
* The <code>pState</code> points to state variables array. |
|||
* Each Biquad stage has 4 state variables <code>x[n-1], x[n-2], y[n-1],</code> and <code>y[n-2]</code>. |
|||
* The state variables are arranged in the <code>pState</code> array as: |
|||
* <pre> |
|||
* {x[n-1], x[n-2], y[n-1], y[n-2]} |
|||
* </pre> |
|||
* The 4 state variables for stage 1 are first, then the 4 state variables for stage 2, and so on. |
|||
* The state array has a total length of <code>4*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df1_init_q31( |
|||
arm_biquad_casd_df1_inst_q31 * S, |
|||
uint8_t numStages, |
|||
q31_t * pCoeffs, |
|||
q31_t * pState, |
|||
int8_t postShift) |
|||
{ |
|||
/* Assign filter stages */ |
|||
S->numStages = numStages; |
|||
|
|||
/* Assign postShift to be applied to the output */ |
|||
S->postShift = postShift; |
|||
|
|||
/* Assign coefficient pointer */ |
|||
S->pCoeffs = pCoeffs; |
|||
|
|||
/* Clear state buffer and size is always 4 * numStages */ |
|||
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(q31_t)); |
|||
|
|||
/* Assign state pointer */ |
|||
S->pState = pState; |
|||
} |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1 group |
|||
*/ |
@ -0,0 +1,411 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_q15.c |
|||
* |
|||
* Description: Processing function for the |
|||
* Q15 Biquad cascade DirectFormI(DF1) filter. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Processing function for the Q15 Biquad cascade filter. |
|||
* @param[in] *S points to an instance of the Q15 Biquad cascade structure. |
|||
* @param[in] *pSrc points to the block of input data. |
|||
* @param[out] *pDst points to the location where the output result is written. |
|||
* @param[in] blockSize number of samples to process per call. |
|||
* @return none. |
|||
* |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function is implemented using a 64-bit internal accumulator. |
|||
* Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result. |
|||
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. |
|||
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved. |
|||
* The accumulator is then shifted by <code>postShift</code> bits to truncate the result to 1.15 format by discarding the low 16 bits. |
|||
* Finally, the result is saturated to 1.15 format. |
|||
* |
|||
* \par |
|||
* Refer to the function <code>arm_biquad_cascade_df1_fast_q15()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4. |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df1_q15( |
|||
const arm_biquad_casd_df1_inst_q15 * S, |
|||
q15_t * pSrc, |
|||
q15_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
q15_t *pIn = pSrc; /* Source pointer */ |
|||
q15_t *pOut = pDst; /* Destination pointer */ |
|||
q31_t in; /* Temporary variable to hold input value */ |
|||
q31_t out; /* Temporary variable to hold output value */ |
|||
q31_t b0; /* Temporary variable to hold bo value */ |
|||
q31_t b1, a1; /* Filter coefficients */ |
|||
q31_t state_in, state_out; /* Filter state variables */ |
|||
q31_t acc_l, acc_h; |
|||
q63_t acc; /* Accumulator */ |
|||
int32_t lShift = (15 - (int32_t) S->postShift); /* Post shift */ |
|||
q15_t *pState = S->pState; /* State pointer */ |
|||
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ |
|||
uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */ |
|||
int32_t uShift = (32 - lShift); |
|||
|
|||
do |
|||
{ |
|||
/* Read the b0 and 0 coefficients using SIMD */ |
|||
b0 = *__SIMD32(pCoeffs)++; |
|||
|
|||
/* Read the b1 and b2 coefficients using SIMD */ |
|||
b1 = *__SIMD32(pCoeffs)++; |
|||
|
|||
/* Read the a1 and a2 coefficients using SIMD */ |
|||
a1 = *__SIMD32(pCoeffs)++; |
|||
|
|||
/* Read the input state values from the state buffer: x[n-1], x[n-2] */ |
|||
state_in = *__SIMD32(pState)++; |
|||
|
|||
/* Read the output state values from the state buffer: y[n-1], y[n-2] */ |
|||
state_out = *__SIMD32(pState)--; |
|||
|
|||
/* Apply loop unrolling and compute 2 output values simultaneously. */ |
|||
/* The variable acc hold output values that are being computed: |
|||
* |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
sample = blockSize >> 1u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 2 outputs at a time. |
|||
** a second loop below computes the remaining 1 sample. */ |
|||
while(sample > 0u) |
|||
{ |
|||
|
|||
/* Read the input */ |
|||
in = *__SIMD32(pIn)++; |
|||
|
|||
/* out = b0 * x[n] + 0 * 0 */ |
|||
out = __SMUAD(b0, in); |
|||
|
|||
/* acc += b1 * x[n-1] + b2 * x[n-2] + out */ |
|||
acc = __SMLALD(b1, state_in, out); |
|||
/* acc += a1 * y[n-1] + a2 * y[n-2] */ |
|||
acc = __SMLALD(a1, state_out, acc); |
|||
|
|||
/* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */ |
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
out = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
out = __SSAT(out, 16); |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ |
|||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
state_in = __PKHBT(in, state_in, 16); |
|||
state_out = __PKHBT(out, state_out, 16); |
|||
|
|||
#else |
|||
|
|||
state_in = __PKHBT(state_in >> 16, (in >> 16), 16); |
|||
state_out = __PKHBT(state_out >> 16, (out), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* out = b0 * x[n] + 0 * 0 */ |
|||
out = __SMUADX(b0, in); |
|||
/* acc += b1 * x[n-1] + b2 * x[n-2] + out */ |
|||
acc = __SMLALD(b1, state_in, out); |
|||
/* acc += a1 * y[n-1] + a2 * y[n-2] */ |
|||
acc = __SMLALD(a1, state_out, acc); |
|||
|
|||
/* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */ |
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
out = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
out = __SSAT(out, 16); |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pOut)++ = __PKHBT(state_out, out, 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ |
|||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
state_in = __PKHBT(in >> 16, state_in, 16); |
|||
state_out = __PKHBT(out, state_out, 16); |
|||
|
|||
#else |
|||
|
|||
state_in = __PKHBT(state_in >> 16, in, 16); |
|||
state_out = __PKHBT(state_out >> 16, out, 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
sample--; |
|||
|
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 2, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
|
|||
if((blockSize & 0x1u) != 0u) |
|||
{ |
|||
/* Read the input */ |
|||
in = *pIn++; |
|||
|
|||
/* out = b0 * x[n] + 0 * 0 */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
out = __SMUAD(b0, in); |
|||
|
|||
#else |
|||
|
|||
out = __SMUADX(b0, in); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* acc = b1 * x[n-1] + b2 * x[n-2] + out */ |
|||
acc = __SMLALD(b1, state_in, out); |
|||
/* acc += a1 * y[n-1] + a2 * y[n-2] */ |
|||
acc = __SMLALD(a1, state_out, acc); |
|||
|
|||
/* The result is converted from 3.29 to 1.31 if postShift = 1, and then saturation is applied */ |
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
out = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
out = __SSAT(out, 16); |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = (q15_t) out; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
/* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */ |
|||
/* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
state_in = __PKHBT(in, state_in, 16); |
|||
state_out = __PKHBT(out, state_out, 16); |
|||
|
|||
#else |
|||
|
|||
state_in = __PKHBT(state_in >> 16, in, 16); |
|||
state_out = __PKHBT(state_out >> 16, out, 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
} |
|||
|
|||
/* The first stage goes from the input wire to the output wire. */ |
|||
/* Subsequent numStages occur in-place in the output wire */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset the output pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
*__SIMD32(pState)++ = state_in; |
|||
*__SIMD32(pState)++ = state_out; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
q15_t *pIn = pSrc; /* Source pointer */ |
|||
q15_t *pOut = pDst; /* Destination pointer */ |
|||
q15_t b0, b1, b2, a1, a2; /* Filter coefficients */ |
|||
q15_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */ |
|||
q15_t Xn; /* temporary input */ |
|||
q63_t acc; /* Accumulator */ |
|||
int32_t shift = (15 - (int32_t) S->postShift); /* Post shift */ |
|||
q15_t *pState = S->pState; /* State pointer */ |
|||
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */ |
|||
uint32_t sample, stage = (uint32_t) S->numStages; /* Stage loop counter */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
pCoeffs++; // skip the 0 coefficient |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/* Reading the state values */ |
|||
Xn1 = pState[0]; |
|||
Xn2 = pState[1]; |
|||
Yn1 = pState[2]; |
|||
Yn2 = pState[3]; |
|||
|
|||
/* The variables acc holds the output value that is computed: |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
|
|||
sample = blockSize; |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
/* acc = b0 * x[n] */ |
|||
acc = (q31_t) b0 *Xn; |
|||
|
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q31_t) b1 *Xn1; |
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q31_t) b2 *Xn2; |
|||
/* acc += a1 * y[n-1] */ |
|||
acc += (q31_t) a1 *Yn1; |
|||
/* acc += a2 * y[n-2] */ |
|||
acc += (q31_t) a2 *Yn2; |
|||
|
|||
/* The result is converted to 1.31 */ |
|||
acc = __SSAT((acc >> shift), 16); |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
Yn2 = Yn1; |
|||
Yn1 = (q15_t) acc; |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = (q15_t) acc; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* The first stage goes from the input buffer to the output buffer. */ |
|||
/* Subsequent stages occur in-place in the output buffer */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset to destination pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* Store the updated state variables back into the pState array */ |
|||
*pState++ = Xn1; |
|||
*pState++ = Xn2; |
|||
*pState++ = Yn1; |
|||
*pState++ = Yn2; |
|||
|
|||
} while(--stage); |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1 group |
|||
*/ |
@ -0,0 +1,405 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df1_q31.c |
|||
* |
|||
* Description: Processing function for the |
|||
* Q31 Biquad cascade filter |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF1 |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Processing function for the Q31 Biquad cascade filter. |
|||
* @param[in] *S points to an instance of the Q31 Biquad cascade structure. |
|||
* @param[in] *pSrc points to the block of input data. |
|||
* @param[out] *pDst points to the block of output data. |
|||
* @param[in] blockSize number of samples to process per call. |
|||
* @return none. |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* \par |
|||
* The function is implemented using an internal 64-bit accumulator. |
|||
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit. |
|||
* Thus, if the accumulator result overflows it wraps around rather than clip. |
|||
* In order to avoid overflows completely the input signal must be scaled down by 2 bits and lie in the range [-0.25 +0.25). |
|||
* After all 5 multiply-accumulates are performed, the 2.62 accumulator is shifted by <code>postShift</code> bits and the result truncated to |
|||
* 1.31 format by discarding the low 32 bits. |
|||
* |
|||
* \par |
|||
* Refer to the function <code>arm_biquad_cascade_df1_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4. |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df1_q31( |
|||
const arm_biquad_casd_df1_inst_q31 * S, |
|||
q31_t * pSrc, |
|||
q31_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
q63_t acc; /* accumulator */ |
|||
uint32_t uShift = ((uint32_t) S->postShift + 1u); |
|||
uint32_t lShift = 32u - uShift; /* Shift to be applied to the output */ |
|||
q31_t *pIn = pSrc; /* input pointer initialization */ |
|||
q31_t *pOut = pDst; /* output pointer initialization */ |
|||
q31_t *pState = S->pState; /* pState pointer initialization */ |
|||
q31_t *pCoeffs = S->pCoeffs; /* coeff pointer initialization */ |
|||
q31_t Xn1, Xn2, Yn1, Yn2; /* Filter state variables */ |
|||
q31_t b0, b1, b2, a1, a2; /* Filter coefficients */ |
|||
q31_t Xn; /* temporary input */ |
|||
uint32_t sample, stage = S->numStages; /* loop counters */ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY_FAMILY |
|||
|
|||
q31_t acc_l, acc_h; /* temporary output variables */ |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/* Reading the state values */ |
|||
Xn1 = pState[0]; |
|||
Xn2 = pState[1]; |
|||
Yn1 = pState[2]; |
|||
Yn2 = pState[3]; |
|||
|
|||
/* Apply loop unrolling and compute 4 output values simultaneously. */ |
|||
/* The variable acc hold output values that are being computed: |
|||
* |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
|
|||
sample = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
|
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) b0 *Xn; |
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) b1 *Xn1; |
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) b2 *Xn2; |
|||
/* acc += a1 * y[n-1] */ |
|||
acc += (q63_t) a1 *Yn1; |
|||
/* acc += a2 * y[n-2] */ |
|||
acc += (q63_t) a2 *Yn2; |
|||
|
|||
/* The result is converted to 1.31 , Yn2 variable is reused */ |
|||
|
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = Yn2; |
|||
|
|||
/* Read the second input */ |
|||
Xn2 = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
|
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) b0 *Xn2; |
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) b1 *Xn; |
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) b2 *Xn1; |
|||
/* acc += a1 * y[n-1] */ |
|||
acc += (q63_t) a1 *Yn2; |
|||
/* acc += a2 * y[n-2] */ |
|||
acc += (q63_t) a2 *Yn1; |
|||
|
|||
|
|||
/* The result is converted to 1.31, Yn1 variable is reused */ |
|||
|
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = Yn1; |
|||
|
|||
/* Read the third input */ |
|||
Xn1 = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
|
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) b0 *Xn1; |
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) b1 *Xn2; |
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) b2 *Xn; |
|||
/* acc += a1 * y[n-1] */ |
|||
acc += (q63_t) a1 *Yn1; |
|||
/* acc += a2 * y[n-2] */ |
|||
acc += (q63_t) a2 *Yn2; |
|||
|
|||
/* The result is converted to 1.31, Yn2 variable is reused */ |
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
Yn2 = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = Yn2; |
|||
|
|||
/* Read the forth input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
|
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) b0 *Xn; |
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) b1 *Xn1; |
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) b2 *Xn2; |
|||
/* acc += a1 * y[n-1] */ |
|||
acc += (q63_t) a1 *Yn2; |
|||
/* acc += a2 * y[n-2] */ |
|||
acc += (q63_t) a2 *Yn1; |
|||
|
|||
/* The result is converted to 1.31, Yn1 variable is reused */ |
|||
/* Calc lower part of acc */ |
|||
acc_l = acc & 0xffffffff; |
|||
|
|||
/* Calc upper part of acc */ |
|||
acc_h = (acc >> 32) & 0xffffffff; |
|||
|
|||
/* Apply shift for lower part of acc and upper part of acc */ |
|||
Yn1 = (uint32_t) acc_l >> lShift | acc_h << uShift; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = Yn1; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
sample = (blockSize & 0x3u); |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
|
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) b0 *Xn; |
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) b1 *Xn1; |
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) b2 *Xn2; |
|||
/* acc += a1 * y[n-1] */ |
|||
acc += (q63_t) a1 *Yn1; |
|||
/* acc += a2 * y[n-2] */ |
|||
acc += (q63_t) a2 *Yn2; |
|||
|
|||
/* The result is converted to 1.31 */ |
|||
acc = acc >> lShift; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
Yn2 = Yn1; |
|||
Yn1 = (q31_t) acc; |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = (q31_t) acc; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* The first stage goes from the input buffer to the output buffer. */ |
|||
/* Subsequent stages occur in-place in the output buffer */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset to destination pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* Store the updated state variables back into the pState array */ |
|||
*pState++ = Xn1; |
|||
*pState++ = Xn2; |
|||
*pState++ = Yn1; |
|||
*pState++ = Yn2; |
|||
|
|||
} while(--stage); |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/* Reading the state values */ |
|||
Xn1 = pState[0]; |
|||
Xn2 = pState[1]; |
|||
Yn1 = pState[2]; |
|||
Yn2 = pState[3]; |
|||
|
|||
/* The variables acc holds the output value that is computed: |
|||
* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] |
|||
*/ |
|||
|
|||
sample = blockSize; |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn = *pIn++; |
|||
|
|||
/* acc = b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2] */ |
|||
/* acc = b0 * x[n] */ |
|||
acc = (q63_t) b0 *Xn; |
|||
|
|||
/* acc += b1 * x[n-1] */ |
|||
acc += (q63_t) b1 *Xn1; |
|||
/* acc += b[2] * x[n-2] */ |
|||
acc += (q63_t) b2 *Xn2; |
|||
/* acc += a1 * y[n-1] */ |
|||
acc += (q63_t) a1 *Yn1; |
|||
/* acc += a2 * y[n-2] */ |
|||
acc += (q63_t) a2 *Yn2; |
|||
|
|||
/* The result is converted to 1.31 */ |
|||
acc = acc >> lShift; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* The states should be updated as: */ |
|||
/* Xn2 = Xn1 */ |
|||
/* Xn1 = Xn */ |
|||
/* Yn2 = Yn1 */ |
|||
/* Yn1 = acc */ |
|||
Xn2 = Xn1; |
|||
Xn1 = Xn; |
|||
Yn2 = Yn1; |
|||
Yn1 = (q31_t) acc; |
|||
|
|||
/* Store the output in the destination buffer. */ |
|||
*pOut++ = (q31_t) acc; |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* The first stage goes from the input buffer to the output buffer. */ |
|||
/* Subsequent stages occur in-place in the output buffer */ |
|||
pIn = pDst; |
|||
|
|||
/* Reset to destination pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* Store the updated state variables back into the pState array */ |
|||
*pState++ = Xn1; |
|||
*pState++ = Xn2; |
|||
*pState++ = Yn1; |
|||
*pState++ = Yn2; |
|||
|
|||
} while(--stage); |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY_FAMILY */ |
|||
} |
|||
|
|||
|
|||
|
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF1 group |
|||
*/ |
@ -0,0 +1,603 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df2T_f32.c |
|||
* |
|||
* Description: Processing function for the floating-point transposed |
|||
* direct form II Biquad cascade filter. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure |
|||
* |
|||
* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure. |
|||
* The filters are implemented as a cascade of second order Biquad sections. |
|||
* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions. |
|||
* Only floating-point data is supported. |
|||
* |
|||
* This function operate on blocks of input and output data and each call to the function |
|||
* processes <code>blockSize</code> samples through the filter. |
|||
* <code>pSrc</code> points to the array of input data and |
|||
* <code>pDst</code> points to the array of output data. |
|||
* Both arrays contain <code>blockSize</code> values. |
|||
* |
|||
* \par Algorithm |
|||
* Each Biquad stage implements a second order filter using the difference equation: |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + d1 |
|||
* d1 = b1 * x[n] + a1 * y[n] + d2 |
|||
* d2 = b2 * x[n] + a2 * y[n] |
|||
* </pre> |
|||
* where d1 and d2 represent the two state values. |
|||
* |
|||
* \par |
|||
* A Biquad filter using a transposed Direct Form II structure is shown below. |
|||
* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad" |
|||
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients. |
|||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients. |
|||
* Pay careful attention to the sign of the feedback coefficients. |
|||
* Some design tools flip the sign of the feedback coefficients: |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + d1; |
|||
* d1 = b1 * x[n] - a1 * y[n] + d2; |
|||
* d2 = b2 * x[n] - a2 * y[n]; |
|||
* </pre> |
|||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library. |
|||
* |
|||
* \par |
|||
* Higher order filters are realized as a cascade of second order sections. |
|||
* <code>numStages</code> refers to the number of second order stages used. |
|||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages. |
|||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the |
|||
* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>). |
|||
* |
|||
* \par |
|||
* <code>pState</code> points to the state variable array. |
|||
* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>. |
|||
* The state variables are arranged in the <code>pState</code> array as: |
|||
* <pre> |
|||
* {d11, d12, d21, d22, ...} |
|||
* </pre> |
|||
* where <code>d1x</code> refers to the state variables for the first Biquad and |
|||
* <code>d2x</code> refers to the state variables for the second Biquad. |
|||
* The state array has a total length of <code>2*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
* |
|||
* \par |
|||
* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II. |
|||
* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types. |
|||
* That is why the Direct Form I structure supports Q15 and Q31 data types. |
|||
* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>. |
|||
* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad. |
|||
* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage. |
|||
* |
|||
* \par Instance Structure |
|||
* The coefficients and state variables for a filter are stored together in an instance data structure. |
|||
* A separate instance structure must be defined for each filter. |
|||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared. |
|||
* |
|||
* \par Init Functions |
|||
* There is also an associated initialization function. |
|||
* The initialization function performs following operations: |
|||
* - Sets the values of the internal structure fields. |
|||
* - Zeros out the values in the state buffer. |
|||
* To do this manually without calling the init function, assign the follow subfields of the instance structure: |
|||
* numStages, pCoeffs, pState. Also set all of the values in pState to zero. |
|||
* |
|||
* \par |
|||
* Use of the initialization function is optional. |
|||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section. |
|||
* To place an instance structure into a const data section, the instance structure must be manually initialized. |
|||
* Set the values in the state buffer to zeros before static initialization. |
|||
* For example, to statically initialize the instance structure use |
|||
* <pre> |
|||
* arm_biquad_cascade_df2T_instance_f32 S1 = {numStages, pState, pCoeffs}; |
|||
* </pre> |
|||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer. |
|||
* <code>pCoeffs</code> is the address of the coefficient buffer; |
|||
* |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF2T |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
|||
* @param[in] *S points to an instance of the filter data structure. |
|||
* @param[in] *pSrc points to the block of input data. |
|||
* @param[out] *pDst points to the block of output data |
|||
* @param[in] blockSize number of samples to process. |
|||
* @return none. |
|||
*/ |
|||
|
|||
|
|||
LOW_OPTIMIZATION_ENTER |
|||
void arm_biquad_cascade_df2T_f32( |
|||
const arm_biquad_cascade_df2T_instance_f32 * S, |
|||
float32_t * pSrc, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
|
|||
float32_t *pIn = pSrc; /* source pointer */ |
|||
float32_t *pOut = pDst; /* destination pointer */ |
|||
float32_t *pState = S->pState; /* State pointer */ |
|||
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */ |
|||
float32_t acc1; /* accumulator */ |
|||
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */ |
|||
float32_t Xn1; /* temporary input */ |
|||
float32_t d1, d2; /* state variables */ |
|||
uint32_t sample, stage = S->numStages; /* loop counters */ |
|||
|
|||
#if defined(ARM_MATH_CM7) |
|||
|
|||
float32_t Xn2, Xn3, Xn4, Xn5, Xn6, Xn7, Xn8; /* Input State variables */ |
|||
float32_t Xn9, Xn10, Xn11, Xn12, Xn13, Xn14, Xn15, Xn16; |
|||
float32_t acc2, acc3, acc4, acc5, acc6, acc7; /* Simulates the accumulator */ |
|||
float32_t acc8, acc9, acc10, acc11, acc12, acc13, acc14, acc15, acc16; |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = pCoeffs[0]; |
|||
b1 = pCoeffs[1]; |
|||
b2 = pCoeffs[2]; |
|||
a1 = pCoeffs[3]; |
|||
/* Apply loop unrolling and compute 16 output values simultaneously. */ |
|||
sample = blockSize >> 4u; |
|||
a2 = pCoeffs[4]; |
|||
|
|||
/*Reading the state values */ |
|||
d1 = pState[0]; |
|||
d2 = pState[1]; |
|||
|
|||
pCoeffs += 5u; |
|||
|
|||
|
|||
/* First part of the processing with loop unrolling. Compute 16 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 15 samples. */ |
|||
while(sample > 0u) { |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
|
|||
/* Read the first 2 inputs. 2 cycles */ |
|||
Xn1 = pIn[0 ]; |
|||
Xn2 = pIn[1 ]; |
|||
|
|||
/* Sample 1. 5 cycles */ |
|||
Xn3 = pIn[2 ]; |
|||
acc1 = b0 * Xn1 + d1; |
|||
|
|||
Xn4 = pIn[3 ]; |
|||
d1 = b1 * Xn1 + d2; |
|||
|
|||
Xn5 = pIn[4 ]; |
|||
d2 = b2 * Xn1; |
|||
|
|||
Xn6 = pIn[5 ]; |
|||
d1 += a1 * acc1; |
|||
|
|||
Xn7 = pIn[6 ]; |
|||
d2 += a2 * acc1; |
|||
|
|||
/* Sample 2. 5 cycles */ |
|||
Xn8 = pIn[7 ]; |
|||
acc2 = b0 * Xn2 + d1; |
|||
|
|||
Xn9 = pIn[8 ]; |
|||
d1 = b1 * Xn2 + d2; |
|||
|
|||
Xn10 = pIn[9 ]; |
|||
d2 = b2 * Xn2; |
|||
|
|||
Xn11 = pIn[10]; |
|||
d1 += a1 * acc2; |
|||
|
|||
Xn12 = pIn[11]; |
|||
d2 += a2 * acc2; |
|||
|
|||
/* Sample 3. 5 cycles */ |
|||
Xn13 = pIn[12]; |
|||
acc3 = b0 * Xn3 + d1; |
|||
|
|||
Xn14 = pIn[13]; |
|||
d1 = b1 * Xn3 + d2; |
|||
|
|||
Xn15 = pIn[14]; |
|||
d2 = b2 * Xn3; |
|||
|
|||
Xn16 = pIn[15]; |
|||
d1 += a1 * acc3; |
|||
|
|||
pIn += 16; |
|||
d2 += a2 * acc3; |
|||
|
|||
/* Sample 4. 5 cycles */ |
|||
acc4 = b0 * Xn4 + d1; |
|||
d1 = b1 * Xn4 + d2; |
|||
d2 = b2 * Xn4; |
|||
d1 += a1 * acc4; |
|||
d2 += a2 * acc4; |
|||
|
|||
/* Sample 5. 5 cycles */ |
|||
acc5 = b0 * Xn5 + d1; |
|||
d1 = b1 * Xn5 + d2; |
|||
d2 = b2 * Xn5; |
|||
d1 += a1 * acc5; |
|||
d2 += a2 * acc5; |
|||
|
|||
/* Sample 6. 5 cycles */ |
|||
acc6 = b0 * Xn6 + d1; |
|||
d1 = b1 * Xn6 + d2; |
|||
d2 = b2 * Xn6; |
|||
d1 += a1 * acc6; |
|||
d2 += a2 * acc6; |
|||
|
|||
/* Sample 7. 5 cycles */ |
|||
acc7 = b0 * Xn7 + d1; |
|||
d1 = b1 * Xn7 + d2; |
|||
d2 = b2 * Xn7; |
|||
d1 += a1 * acc7; |
|||
d2 += a2 * acc7; |
|||
|
|||
/* Sample 8. 5 cycles */ |
|||
acc8 = b0 * Xn8 + d1; |
|||
d1 = b1 * Xn8 + d2; |
|||
d2 = b2 * Xn8; |
|||
d1 += a1 * acc8; |
|||
d2 += a2 * acc8; |
|||
|
|||
/* Sample 9. 5 cycles */ |
|||
acc9 = b0 * Xn9 + d1; |
|||
d1 = b1 * Xn9 + d2; |
|||
d2 = b2 * Xn9; |
|||
d1 += a1 * acc9; |
|||
d2 += a2 * acc9; |
|||
|
|||
/* Sample 10. 5 cycles */ |
|||
acc10 = b0 * Xn10 + d1; |
|||
d1 = b1 * Xn10 + d2; |
|||
d2 = b2 * Xn10; |
|||
d1 += a1 * acc10; |
|||
d2 += a2 * acc10; |
|||
|
|||
/* Sample 11. 5 cycles */ |
|||
acc11 = b0 * Xn11 + d1; |
|||
d1 = b1 * Xn11 + d2; |
|||
d2 = b2 * Xn11; |
|||
d1 += a1 * acc11; |
|||
d2 += a2 * acc11; |
|||
|
|||
/* Sample 12. 5 cycles */ |
|||
acc12 = b0 * Xn12 + d1; |
|||
d1 = b1 * Xn12 + d2; |
|||
d2 = b2 * Xn12; |
|||
d1 += a1 * acc12; |
|||
d2 += a2 * acc12; |
|||
|
|||
/* Sample 13. 5 cycles */ |
|||
acc13 = b0 * Xn13 + d1; |
|||
d1 = b1 * Xn13 + d2; |
|||
d2 = b2 * Xn13; |
|||
|
|||
pOut[0 ] = acc1 ; |
|||
d1 += a1 * acc13; |
|||
|
|||
pOut[1 ] = acc2 ; |
|||
d2 += a2 * acc13; |
|||
|
|||
/* Sample 14. 5 cycles */ |
|||
pOut[2 ] = acc3 ; |
|||
acc14 = b0 * Xn14 + d1; |
|||
|
|||
pOut[3 ] = acc4 ; |
|||
d1 = b1 * Xn14 + d2; |
|||
|
|||
pOut[4 ] = acc5 ; |
|||
d2 = b2 * Xn14; |
|||
|
|||
pOut[5 ] = acc6 ; |
|||
d1 += a1 * acc14; |
|||
|
|||
pOut[6 ] = acc7 ; |
|||
d2 += a2 * acc14; |
|||
|
|||
/* Sample 15. 5 cycles */ |
|||
pOut[7 ] = acc8 ; |
|||
pOut[8 ] = acc9 ; |
|||
acc15 = b0 * Xn15 + d1; |
|||
|
|||
pOut[9 ] = acc10; |
|||
d1 = b1 * Xn15 + d2; |
|||
|
|||
pOut[10] = acc11; |
|||
d2 = b2 * Xn15; |
|||
|
|||
pOut[11] = acc12; |
|||
d1 += a1 * acc15; |
|||
|
|||
pOut[12] = acc13; |
|||
d2 += a2 * acc15; |
|||
|
|||
/* Sample 16. 5 cycles */ |
|||
pOut[13] = acc14; |
|||
acc16 = b0 * Xn16 + d1; |
|||
|
|||
pOut[14] = acc15; |
|||
d1 = b1 * Xn16 + d2; |
|||
|
|||
pOut[15] = acc16; |
|||
d2 = b2 * Xn16; |
|||
|
|||
sample--; |
|||
d1 += a1 * acc16; |
|||
|
|||
pOut += 16; |
|||
d2 += a2 * acc16; |
|||
} |
|||
|
|||
sample = blockSize & 0xFu; |
|||
while(sample > 0u) { |
|||
Xn1 = *pIn; |
|||
acc1 = b0 * Xn1 + d1; |
|||
|
|||
pIn++; |
|||
d1 = b1 * Xn1 + d2; |
|||
|
|||
*pOut = acc1; |
|||
d2 = b2 * Xn1; |
|||
|
|||
pOut++; |
|||
d1 += a1 * acc1; |
|||
|
|||
sample--; |
|||
d2 += a2 * acc1; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
pState[0] = d1; |
|||
/* The current stage input is given as the output to the next stage */ |
|||
pIn = pDst; |
|||
|
|||
pState[1] = d2; |
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
pState += 2u; |
|||
|
|||
/*Reset the output working pointer */ |
|||
pOut = pDst; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#elif defined(ARM_MATH_CM0_FAMILY) |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/*Reading the state values */ |
|||
d1 = pState[0]; |
|||
d2 = pState[1]; |
|||
|
|||
|
|||
sample = blockSize; |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn1 = *pIn++; |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
acc1 = (b0 * Xn1) + d1; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = acc1; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
d1 = ((b1 * Xn1) + (a1 * acc1)) + d2; |
|||
|
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
d2 = (b2 * Xn1) + (a2 * acc1); |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
*pState++ = d1; |
|||
*pState++ = d2; |
|||
|
|||
/* The current stage input is given as the output to the next stage */ |
|||
pIn = pDst; |
|||
|
|||
/*Reset the output working pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#else |
|||
|
|||
float32_t Xn2, Xn3, Xn4; /* Input State variables */ |
|||
float32_t acc2, acc3, acc4; /* accumulator */ |
|||
|
|||
|
|||
float32_t p0, p1, p2, p3, p4, A1; |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
|
|||
/*Reading the state values */ |
|||
d1 = pState[0]; |
|||
d2 = pState[1]; |
|||
|
|||
/* Apply loop unrolling and compute 4 output values simultaneously. */ |
|||
sample = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(sample > 0u) { |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
|
|||
/* Read the four inputs */ |
|||
Xn1 = pIn[0]; |
|||
Xn2 = pIn[1]; |
|||
Xn3 = pIn[2]; |
|||
Xn4 = pIn[3]; |
|||
pIn += 4; |
|||
|
|||
p0 = b0 * Xn1; |
|||
p1 = b1 * Xn1; |
|||
acc1 = p0 + d1; |
|||
p0 = b0 * Xn2; |
|||
p3 = a1 * acc1; |
|||
p2 = b2 * Xn1; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc1; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
p1 = b1 * Xn2; |
|||
acc2 = p0 + d1; |
|||
p0 = b0 * Xn3; |
|||
p3 = a1 * acc2; |
|||
p2 = b2 * Xn2; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc2; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
p1 = b1 * Xn3; |
|||
acc3 = p0 + d1; |
|||
p0 = b0 * Xn4; |
|||
p3 = a1 * acc3; |
|||
p2 = b2 * Xn3; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc3; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
acc4 = p0 + d1; |
|||
p1 = b1 * Xn4; |
|||
p3 = a1 * acc4; |
|||
p2 = b2 * Xn4; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc4; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
pOut[0] = acc1; |
|||
pOut[1] = acc2; |
|||
pOut[2] = acc3; |
|||
pOut[3] = acc4; |
|||
pOut += 4; |
|||
|
|||
sample--; |
|||
} |
|||
|
|||
sample = blockSize & 0x3u; |
|||
while(sample > 0u) { |
|||
Xn1 = *pIn++; |
|||
|
|||
p0 = b0 * Xn1; |
|||
p1 = b1 * Xn1; |
|||
acc1 = p0 + d1; |
|||
p3 = a1 * acc1; |
|||
p2 = b2 * Xn1; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc1; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
*pOut++ = acc1; |
|||
|
|||
sample--; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
*pState++ = d1; |
|||
*pState++ = d2; |
|||
|
|||
/* The current stage input is given as the output to the next stage */ |
|||
pIn = pDst; |
|||
|
|||
/*Reset the output working pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#endif |
|||
|
|||
} |
|||
LOW_OPTIMIZATION_EXIT |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF2T group |
|||
*/ |
@ -0,0 +1,603 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df2T_f64.c |
|||
* |
|||
* Description: Processing function for the floating-point transposed |
|||
* direct form II Biquad cascade filter. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure |
|||
* |
|||
* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure. |
|||
* The filters are implemented as a cascade of second order Biquad sections. |
|||
* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions. |
|||
* Only floating-point data is supported. |
|||
* |
|||
* This function operate on blocks of input and output data and each call to the function |
|||
* processes <code>blockSize</code> samples through the filter. |
|||
* <code>pSrc</code> points to the array of input data and |
|||
* <code>pDst</code> points to the array of output data. |
|||
* Both arrays contain <code>blockSize</code> values. |
|||
* |
|||
* \par Algorithm |
|||
* Each Biquad stage implements a second order filter using the difference equation: |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + d1 |
|||
* d1 = b1 * x[n] + a1 * y[n] + d2 |
|||
* d2 = b2 * x[n] + a2 * y[n] |
|||
* </pre> |
|||
* where d1 and d2 represent the two state values. |
|||
* |
|||
* \par |
|||
* A Biquad filter using a transposed Direct Form II structure is shown below. |
|||
* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad" |
|||
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients. |
|||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients. |
|||
* Pay careful attention to the sign of the feedback coefficients. |
|||
* Some design tools flip the sign of the feedback coefficients: |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + d1; |
|||
* d1 = b1 * x[n] - a1 * y[n] + d2; |
|||
* d2 = b2 * x[n] - a2 * y[n]; |
|||
* </pre> |
|||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library. |
|||
* |
|||
* \par |
|||
* Higher order filters are realized as a cascade of second order sections. |
|||
* <code>numStages</code> refers to the number of second order stages used. |
|||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages. |
|||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the |
|||
* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>). |
|||
* |
|||
* \par |
|||
* <code>pState</code> points to the state variable array. |
|||
* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>. |
|||
* The state variables are arranged in the <code>pState</code> array as: |
|||
* <pre> |
|||
* {d11, d12, d21, d22, ...} |
|||
* </pre> |
|||
* where <code>d1x</code> refers to the state variables for the first Biquad and |
|||
* <code>d2x</code> refers to the state variables for the second Biquad. |
|||
* The state array has a total length of <code>2*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
* |
|||
* \par |
|||
* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II. |
|||
* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types. |
|||
* That is why the Direct Form I structure supports Q15 and Q31 data types. |
|||
* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>. |
|||
* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad. |
|||
* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage. |
|||
* |
|||
* \par Instance Structure |
|||
* The coefficients and state variables for a filter are stored together in an instance data structure. |
|||
* A separate instance structure must be defined for each filter. |
|||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared. |
|||
* |
|||
* \par Init Functions |
|||
* There is also an associated initialization function. |
|||
* The initialization function performs following operations: |
|||
* - Sets the values of the internal structure fields. |
|||
* - Zeros out the values in the state buffer. |
|||
* To do this manually without calling the init function, assign the follow subfields of the instance structure: |
|||
* numStages, pCoeffs, pState. Also set all of the values in pState to zero. |
|||
* |
|||
* \par |
|||
* Use of the initialization function is optional. |
|||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section. |
|||
* To place an instance structure into a const data section, the instance structure must be manually initialized. |
|||
* Set the values in the state buffer to zeros before static initialization. |
|||
* For example, to statically initialize the instance structure use |
|||
* <pre> |
|||
* arm_biquad_cascade_df2T_instance_f64 S1 = {numStages, pState, pCoeffs}; |
|||
* </pre> |
|||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer. |
|||
* <code>pCoeffs</code> is the address of the coefficient buffer; |
|||
* |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF2T |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
|||
* @param[in] *S points to an instance of the filter data structure. |
|||
* @param[in] *pSrc points to the block of input data. |
|||
* @param[out] *pDst points to the block of output data |
|||
* @param[in] blockSize number of samples to process. |
|||
* @return none. |
|||
*/ |
|||
|
|||
|
|||
LOW_OPTIMIZATION_ENTER |
|||
void arm_biquad_cascade_df2T_f64( |
|||
const arm_biquad_cascade_df2T_instance_f64 * S, |
|||
float64_t * pSrc, |
|||
float64_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
|
|||
float64_t *pIn = pSrc; /* source pointer */ |
|||
float64_t *pOut = pDst; /* destination pointer */ |
|||
float64_t *pState = S->pState; /* State pointer */ |
|||
float64_t *pCoeffs = S->pCoeffs; /* coefficient pointer */ |
|||
float64_t acc1; /* accumulator */ |
|||
float64_t b0, b1, b2, a1, a2; /* Filter coefficients */ |
|||
float64_t Xn1; /* temporary input */ |
|||
float64_t d1, d2; /* state variables */ |
|||
uint32_t sample, stage = S->numStages; /* loop counters */ |
|||
|
|||
#if defined(ARM_MATH_CM7) |
|||
|
|||
float64_t Xn2, Xn3, Xn4, Xn5, Xn6, Xn7, Xn8; /* Input State variables */ |
|||
float64_t Xn9, Xn10, Xn11, Xn12, Xn13, Xn14, Xn15, Xn16; |
|||
float64_t acc2, acc3, acc4, acc5, acc6, acc7; /* Simulates the accumulator */ |
|||
float64_t acc8, acc9, acc10, acc11, acc12, acc13, acc14, acc15, acc16; |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = pCoeffs[0]; |
|||
b1 = pCoeffs[1]; |
|||
b2 = pCoeffs[2]; |
|||
a1 = pCoeffs[3]; |
|||
/* Apply loop unrolling and compute 16 output values simultaneously. */ |
|||
sample = blockSize >> 4u; |
|||
a2 = pCoeffs[4]; |
|||
|
|||
/*Reading the state values */ |
|||
d1 = pState[0]; |
|||
d2 = pState[1]; |
|||
|
|||
pCoeffs += 5u; |
|||
|
|||
|
|||
/* First part of the processing with loop unrolling. Compute 16 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 15 samples. */ |
|||
while(sample > 0u) { |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
|
|||
/* Read the first 2 inputs. 2 cycles */ |
|||
Xn1 = pIn[0 ]; |
|||
Xn2 = pIn[1 ]; |
|||
|
|||
/* Sample 1. 5 cycles */ |
|||
Xn3 = pIn[2 ]; |
|||
acc1 = b0 * Xn1 + d1; |
|||
|
|||
Xn4 = pIn[3 ]; |
|||
d1 = b1 * Xn1 + d2; |
|||
|
|||
Xn5 = pIn[4 ]; |
|||
d2 = b2 * Xn1; |
|||
|
|||
Xn6 = pIn[5 ]; |
|||
d1 += a1 * acc1; |
|||
|
|||
Xn7 = pIn[6 ]; |
|||
d2 += a2 * acc1; |
|||
|
|||
/* Sample 2. 5 cycles */ |
|||
Xn8 = pIn[7 ]; |
|||
acc2 = b0 * Xn2 + d1; |
|||
|
|||
Xn9 = pIn[8 ]; |
|||
d1 = b1 * Xn2 + d2; |
|||
|
|||
Xn10 = pIn[9 ]; |
|||
d2 = b2 * Xn2; |
|||
|
|||
Xn11 = pIn[10]; |
|||
d1 += a1 * acc2; |
|||
|
|||
Xn12 = pIn[11]; |
|||
d2 += a2 * acc2; |
|||
|
|||
/* Sample 3. 5 cycles */ |
|||
Xn13 = pIn[12]; |
|||
acc3 = b0 * Xn3 + d1; |
|||
|
|||
Xn14 = pIn[13]; |
|||
d1 = b1 * Xn3 + d2; |
|||
|
|||
Xn15 = pIn[14]; |
|||
d2 = b2 * Xn3; |
|||
|
|||
Xn16 = pIn[15]; |
|||
d1 += a1 * acc3; |
|||
|
|||
pIn += 16; |
|||
d2 += a2 * acc3; |
|||
|
|||
/* Sample 4. 5 cycles */ |
|||
acc4 = b0 * Xn4 + d1; |
|||
d1 = b1 * Xn4 + d2; |
|||
d2 = b2 * Xn4; |
|||
d1 += a1 * acc4; |
|||
d2 += a2 * acc4; |
|||
|
|||
/* Sample 5. 5 cycles */ |
|||
acc5 = b0 * Xn5 + d1; |
|||
d1 = b1 * Xn5 + d2; |
|||
d2 = b2 * Xn5; |
|||
d1 += a1 * acc5; |
|||
d2 += a2 * acc5; |
|||
|
|||
/* Sample 6. 5 cycles */ |
|||
acc6 = b0 * Xn6 + d1; |
|||
d1 = b1 * Xn6 + d2; |
|||
d2 = b2 * Xn6; |
|||
d1 += a1 * acc6; |
|||
d2 += a2 * acc6; |
|||
|
|||
/* Sample 7. 5 cycles */ |
|||
acc7 = b0 * Xn7 + d1; |
|||
d1 = b1 * Xn7 + d2; |
|||
d2 = b2 * Xn7; |
|||
d1 += a1 * acc7; |
|||
d2 += a2 * acc7; |
|||
|
|||
/* Sample 8. 5 cycles */ |
|||
acc8 = b0 * Xn8 + d1; |
|||
d1 = b1 * Xn8 + d2; |
|||
d2 = b2 * Xn8; |
|||
d1 += a1 * acc8; |
|||
d2 += a2 * acc8; |
|||
|
|||
/* Sample 9. 5 cycles */ |
|||
acc9 = b0 * Xn9 + d1; |
|||
d1 = b1 * Xn9 + d2; |
|||
d2 = b2 * Xn9; |
|||
d1 += a1 * acc9; |
|||
d2 += a2 * acc9; |
|||
|
|||
/* Sample 10. 5 cycles */ |
|||
acc10 = b0 * Xn10 + d1; |
|||
d1 = b1 * Xn10 + d2; |
|||
d2 = b2 * Xn10; |
|||
d1 += a1 * acc10; |
|||
d2 += a2 * acc10; |
|||
|
|||
/* Sample 11. 5 cycles */ |
|||
acc11 = b0 * Xn11 + d1; |
|||
d1 = b1 * Xn11 + d2; |
|||
d2 = b2 * Xn11; |
|||
d1 += a1 * acc11; |
|||
d2 += a2 * acc11; |
|||
|
|||
/* Sample 12. 5 cycles */ |
|||
acc12 = b0 * Xn12 + d1; |
|||
d1 = b1 * Xn12 + d2; |
|||
d2 = b2 * Xn12; |
|||
d1 += a1 * acc12; |
|||
d2 += a2 * acc12; |
|||
|
|||
/* Sample 13. 5 cycles */ |
|||
acc13 = b0 * Xn13 + d1; |
|||
d1 = b1 * Xn13 + d2; |
|||
d2 = b2 * Xn13; |
|||
|
|||
pOut[0 ] = acc1 ; |
|||
d1 += a1 * acc13; |
|||
|
|||
pOut[1 ] = acc2 ; |
|||
d2 += a2 * acc13; |
|||
|
|||
/* Sample 14. 5 cycles */ |
|||
pOut[2 ] = acc3 ; |
|||
acc14 = b0 * Xn14 + d1; |
|||
|
|||
pOut[3 ] = acc4 ; |
|||
d1 = b1 * Xn14 + d2; |
|||
|
|||
pOut[4 ] = acc5 ; |
|||
d2 = b2 * Xn14; |
|||
|
|||
pOut[5 ] = acc6 ; |
|||
d1 += a1 * acc14; |
|||
|
|||
pOut[6 ] = acc7 ; |
|||
d2 += a2 * acc14; |
|||
|
|||
/* Sample 15. 5 cycles */ |
|||
pOut[7 ] = acc8 ; |
|||
pOut[8 ] = acc9 ; |
|||
acc15 = b0 * Xn15 + d1; |
|||
|
|||
pOut[9 ] = acc10; |
|||
d1 = b1 * Xn15 + d2; |
|||
|
|||
pOut[10] = acc11; |
|||
d2 = b2 * Xn15; |
|||
|
|||
pOut[11] = acc12; |
|||
d1 += a1 * acc15; |
|||
|
|||
pOut[12] = acc13; |
|||
d2 += a2 * acc15; |
|||
|
|||
/* Sample 16. 5 cycles */ |
|||
pOut[13] = acc14; |
|||
acc16 = b0 * Xn16 + d1; |
|||
|
|||
pOut[14] = acc15; |
|||
d1 = b1 * Xn16 + d2; |
|||
|
|||
pOut[15] = acc16; |
|||
d2 = b2 * Xn16; |
|||
|
|||
sample--; |
|||
d1 += a1 * acc16; |
|||
|
|||
pOut += 16; |
|||
d2 += a2 * acc16; |
|||
} |
|||
|
|||
sample = blockSize & 0xFu; |
|||
while(sample > 0u) { |
|||
Xn1 = *pIn; |
|||
acc1 = b0 * Xn1 + d1; |
|||
|
|||
pIn++; |
|||
d1 = b1 * Xn1 + d2; |
|||
|
|||
*pOut = acc1; |
|||
d2 = b2 * Xn1; |
|||
|
|||
pOut++; |
|||
d1 += a1 * acc1; |
|||
|
|||
sample--; |
|||
d2 += a2 * acc1; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
pState[0] = d1; |
|||
/* The current stage input is given as the output to the next stage */ |
|||
pIn = pDst; |
|||
|
|||
pState[1] = d2; |
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
pState += 2u; |
|||
|
|||
/*Reset the output working pointer */ |
|||
pOut = pDst; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#elif defined(ARM_MATH_CM0_FAMILY) |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/*Reading the state values */ |
|||
d1 = pState[0]; |
|||
d2 = pState[1]; |
|||
|
|||
|
|||
sample = blockSize; |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn1 = *pIn++; |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
acc1 = (b0 * Xn1) + d1; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = acc1; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
d1 = ((b1 * Xn1) + (a1 * acc1)) + d2; |
|||
|
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
d2 = (b2 * Xn1) + (a2 * acc1); |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
*pState++ = d1; |
|||
*pState++ = d2; |
|||
|
|||
/* The current stage input is given as the output to the next stage */ |
|||
pIn = pDst; |
|||
|
|||
/*Reset the output working pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#else |
|||
|
|||
float64_t Xn2, Xn3, Xn4; /* Input State variables */ |
|||
float64_t acc2, acc3, acc4; /* accumulator */ |
|||
|
|||
|
|||
float64_t p0, p1, p2, p3, p4, A1; |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
|
|||
/*Reading the state values */ |
|||
d1 = pState[0]; |
|||
d2 = pState[1]; |
|||
|
|||
/* Apply loop unrolling and compute 4 output values simultaneously. */ |
|||
sample = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(sample > 0u) { |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
|
|||
/* Read the four inputs */ |
|||
Xn1 = pIn[0]; |
|||
Xn2 = pIn[1]; |
|||
Xn3 = pIn[2]; |
|||
Xn4 = pIn[3]; |
|||
pIn += 4; |
|||
|
|||
p0 = b0 * Xn1; |
|||
p1 = b1 * Xn1; |
|||
acc1 = p0 + d1; |
|||
p0 = b0 * Xn2; |
|||
p3 = a1 * acc1; |
|||
p2 = b2 * Xn1; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc1; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
p1 = b1 * Xn2; |
|||
acc2 = p0 + d1; |
|||
p0 = b0 * Xn3; |
|||
p3 = a1 * acc2; |
|||
p2 = b2 * Xn2; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc2; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
p1 = b1 * Xn3; |
|||
acc3 = p0 + d1; |
|||
p0 = b0 * Xn4; |
|||
p3 = a1 * acc3; |
|||
p2 = b2 * Xn3; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc3; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
acc4 = p0 + d1; |
|||
p1 = b1 * Xn4; |
|||
p3 = a1 * acc4; |
|||
p2 = b2 * Xn4; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc4; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
pOut[0] = acc1; |
|||
pOut[1] = acc2; |
|||
pOut[2] = acc3; |
|||
pOut[3] = acc4; |
|||
pOut += 4; |
|||
|
|||
sample--; |
|||
} |
|||
|
|||
sample = blockSize & 0x3u; |
|||
while(sample > 0u) { |
|||
Xn1 = *pIn++; |
|||
|
|||
p0 = b0 * Xn1; |
|||
p1 = b1 * Xn1; |
|||
acc1 = p0 + d1; |
|||
p3 = a1 * acc1; |
|||
p2 = b2 * Xn1; |
|||
A1 = p1 + p3; |
|||
p4 = a2 * acc1; |
|||
d1 = A1 + d2; |
|||
d2 = p2 + p4; |
|||
|
|||
*pOut++ = acc1; |
|||
|
|||
sample--; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
*pState++ = d1; |
|||
*pState++ = d2; |
|||
|
|||
/* The current stage input is given as the output to the next stage */ |
|||
pIn = pDst; |
|||
|
|||
/*Reset the output working pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#endif |
|||
|
|||
} |
|||
LOW_OPTIMIZATION_EXIT |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF2T group |
|||
*/ |
@ -0,0 +1,102 @@ |
|||
/*----------------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df2T_init_f32.c |
|||
* |
|||
* Description: Initialization function for the floating-point transposed |
|||
* direct form II Biquad cascade filter. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------*/ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF2T |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
|||
* @param[in,out] *S points to an instance of the filter data structure. |
|||
* @param[in] numStages number of 2nd order stages in the filter. |
|||
* @param[in] *pCoeffs points to the filter coefficients. |
|||
* @param[in] *pState points to the state buffer. |
|||
* @return none |
|||
* |
|||
* <b>Coefficient and State Ordering:</b> |
|||
* \par |
|||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order: |
|||
* <pre> |
|||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...} |
|||
* </pre> |
|||
* |
|||
* \par |
|||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage, |
|||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage, |
|||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values. |
|||
* |
|||
* \par |
|||
* The <code>pState</code> is a pointer to state array. |
|||
* Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code>. |
|||
* The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on. |
|||
* The state array has a total length of <code>2*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df2T_init_f32( |
|||
arm_biquad_cascade_df2T_instance_f32 * S, |
|||
uint8_t numStages, |
|||
float32_t * pCoeffs, |
|||
float32_t * pState) |
|||
{ |
|||
/* Assign filter stages */ |
|||
S->numStages = numStages; |
|||
|
|||
/* Assign coefficient pointer */ |
|||
S->pCoeffs = pCoeffs; |
|||
|
|||
/* Clear state buffer and size is always 2 * numStages */ |
|||
memset(pState, 0, (2u * (uint32_t) numStages) * sizeof(float32_t)); |
|||
|
|||
/* Assign state pointer */ |
|||
S->pState = pState; |
|||
} |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF2T group |
|||
*/ |
@ -0,0 +1,102 @@ |
|||
/*----------------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_df2T_init_f64.c |
|||
* |
|||
* Description: Initialization function for the floating-point transposed |
|||
* direct form II Biquad cascade filter. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------*/ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF2T |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
|||
* @param[in,out] *S points to an instance of the filter data structure. |
|||
* @param[in] numStages number of 2nd order stages in the filter. |
|||
* @param[in] *pCoeffs points to the filter coefficients. |
|||
* @param[in] *pState points to the state buffer. |
|||
* @return none |
|||
* |
|||
* <b>Coefficient and State Ordering:</b> |
|||
* \par |
|||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order: |
|||
* <pre> |
|||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...} |
|||
* </pre> |
|||
* |
|||
* \par |
|||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage, |
|||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage, |
|||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values. |
|||
* |
|||
* \par |
|||
* The <code>pState</code> is a pointer to state array. |
|||
* Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code>. |
|||
* The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on. |
|||
* The state array has a total length of <code>2*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_df2T_init_f64( |
|||
arm_biquad_cascade_df2T_instance_f64 * S, |
|||
uint8_t numStages, |
|||
float64_t * pCoeffs, |
|||
float64_t * pState) |
|||
{ |
|||
/* Assign filter stages */ |
|||
S->numStages = numStages; |
|||
|
|||
/* Assign coefficient pointer */ |
|||
S->pCoeffs = pCoeffs; |
|||
|
|||
/* Clear state buffer and size is always 2 * numStages */ |
|||
memset(pState, 0, (2u * (uint32_t) numStages) * sizeof(float64_t)); |
|||
|
|||
/* Assign state pointer */ |
|||
S->pState = pState; |
|||
} |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF2T group |
|||
*/ |
@ -0,0 +1,683 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_stereo_df2T_f32.c |
|||
* |
|||
* Description: Processing function for the floating-point transposed |
|||
* direct form II Biquad cascade filter. 2 channels |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure |
|||
* |
|||
* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure. |
|||
* The filters are implemented as a cascade of second order Biquad sections. |
|||
* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions. |
|||
* Only floating-point data is supported. |
|||
* |
|||
* This function operate on blocks of input and output data and each call to the function |
|||
* processes <code>blockSize</code> samples through the filter. |
|||
* <code>pSrc</code> points to the array of input data and |
|||
* <code>pDst</code> points to the array of output data. |
|||
* Both arrays contain <code>blockSize</code> values. |
|||
* |
|||
* \par Algorithm |
|||
* Each Biquad stage implements a second order filter using the difference equation: |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + d1 |
|||
* d1 = b1 * x[n] + a1 * y[n] + d2 |
|||
* d2 = b2 * x[n] + a2 * y[n] |
|||
* </pre> |
|||
* where d1 and d2 represent the two state values. |
|||
* |
|||
* \par |
|||
* A Biquad filter using a transposed Direct Form II structure is shown below. |
|||
* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad" |
|||
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients. |
|||
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients. |
|||
* Pay careful attention to the sign of the feedback coefficients. |
|||
* Some design tools flip the sign of the feedback coefficients: |
|||
* <pre> |
|||
* y[n] = b0 * x[n] + d1; |
|||
* d1 = b1 * x[n] - a1 * y[n] + d2; |
|||
* d2 = b2 * x[n] - a2 * y[n]; |
|||
* </pre> |
|||
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library. |
|||
* |
|||
* \par |
|||
* Higher order filters are realized as a cascade of second order sections. |
|||
* <code>numStages</code> refers to the number of second order stages used. |
|||
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages. |
|||
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the |
|||
* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>). |
|||
* |
|||
* \par |
|||
* <code>pState</code> points to the state variable array. |
|||
* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>. |
|||
* The state variables are arranged in the <code>pState</code> array as: |
|||
* <pre> |
|||
* {d11, d12, d21, d22, ...} |
|||
* </pre> |
|||
* where <code>d1x</code> refers to the state variables for the first Biquad and |
|||
* <code>d2x</code> refers to the state variables for the second Biquad. |
|||
* The state array has a total length of <code>2*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
* |
|||
* \par |
|||
* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II. |
|||
* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types. |
|||
* That is why the Direct Form I structure supports Q15 and Q31 data types. |
|||
* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>. |
|||
* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad. |
|||
* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage. |
|||
* |
|||
* \par Instance Structure |
|||
* The coefficients and state variables for a filter are stored together in an instance data structure. |
|||
* A separate instance structure must be defined for each filter. |
|||
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared. |
|||
* |
|||
* \par Init Functions |
|||
* There is also an associated initialization function. |
|||
* The initialization function performs following operations: |
|||
* - Sets the values of the internal structure fields. |
|||
* - Zeros out the values in the state buffer. |
|||
* To do this manually without calling the init function, assign the follow subfields of the instance structure: |
|||
* numStages, pCoeffs, pState. Also set all of the values in pState to zero. |
|||
* |
|||
* \par |
|||
* Use of the initialization function is optional. |
|||
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section. |
|||
* To place an instance structure into a const data section, the instance structure must be manually initialized. |
|||
* Set the values in the state buffer to zeros before static initialization. |
|||
* For example, to statically initialize the instance structure use |
|||
* <pre> |
|||
* arm_biquad_cascade_df2T_instance_f32 S1 = {numStages, pState, pCoeffs}; |
|||
* </pre> |
|||
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer. |
|||
* <code>pCoeffs</code> is the address of the coefficient buffer; |
|||
* |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF2T |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. |
|||
* @param[in] *S points to an instance of the filter data structure. |
|||
* @param[in] *pSrc points to the block of input data. |
|||
* @param[out] *pDst points to the block of output data |
|||
* @param[in] blockSize number of samples to process. |
|||
* @return none. |
|||
*/ |
|||
|
|||
|
|||
LOW_OPTIMIZATION_ENTER |
|||
void arm_biquad_cascade_stereo_df2T_f32( |
|||
const arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
|||
float32_t * pSrc, |
|||
float32_t * pDst, |
|||
uint32_t blockSize) |
|||
{ |
|||
|
|||
float32_t *pIn = pSrc; /* source pointer */ |
|||
float32_t *pOut = pDst; /* destination pointer */ |
|||
float32_t *pState = S->pState; /* State pointer */ |
|||
float32_t *pCoeffs = S->pCoeffs; /* coefficient pointer */ |
|||
float32_t acc1a, acc1b; /* accumulator */ |
|||
float32_t b0, b1, b2, a1, a2; /* Filter coefficients */ |
|||
float32_t Xn1a, Xn1b; /* temporary input */ |
|||
float32_t d1a, d2a, d1b, d2b; /* state variables */ |
|||
uint32_t sample, stage = S->numStages; /* loop counters */ |
|||
|
|||
#if defined(ARM_MATH_CM7) |
|||
|
|||
float32_t Xn2a, Xn3a, Xn4a, Xn5a, Xn6a, Xn7a, Xn8a; /* Input State variables */ |
|||
float32_t Xn2b, Xn3b, Xn4b, Xn5b, Xn6b, Xn7b, Xn8b; /* Input State variables */ |
|||
float32_t acc2a, acc3a, acc4a, acc5a, acc6a, acc7a, acc8a; /* Simulates the accumulator */ |
|||
float32_t acc2b, acc3b, acc4b, acc5b, acc6b, acc7b, acc8b; /* Simulates the accumulator */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = pCoeffs[0]; |
|||
b1 = pCoeffs[1]; |
|||
b2 = pCoeffs[2]; |
|||
a1 = pCoeffs[3]; |
|||
/* Apply loop unrolling and compute 8 output values simultaneously. */ |
|||
sample = blockSize >> 3u; |
|||
a2 = pCoeffs[4]; |
|||
|
|||
/*Reading the state values */ |
|||
d1a = pState[0]; |
|||
d2a = pState[1]; |
|||
d1b = pState[2]; |
|||
d2b = pState[3]; |
|||
|
|||
pCoeffs += 5u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 8 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 7 samples. */ |
|||
while(sample > 0u) { |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
|
|||
/* Read the first 2 inputs. 2 cycles */ |
|||
Xn1a = pIn[0 ]; |
|||
Xn1b = pIn[1 ]; |
|||
|
|||
/* Sample 1. 5 cycles */ |
|||
Xn2a = pIn[2 ]; |
|||
acc1a = b0 * Xn1a + d1a; |
|||
|
|||
Xn2b = pIn[3 ]; |
|||
d1a = b1 * Xn1a + d2a; |
|||
|
|||
Xn3a = pIn[4 ]; |
|||
d2a = b2 * Xn1a; |
|||
|
|||
Xn3b = pIn[5 ]; |
|||
d1a += a1 * acc1a; |
|||
|
|||
Xn4a = pIn[6 ]; |
|||
d2a += a2 * acc1a; |
|||
|
|||
/* Sample 2. 5 cycles */ |
|||
Xn4b = pIn[7 ]; |
|||
acc1b = b0 * Xn1b + d1b; |
|||
|
|||
Xn5a = pIn[8 ]; |
|||
d1b = b1 * Xn1b + d2b; |
|||
|
|||
Xn5b = pIn[9 ]; |
|||
d2b = b2 * Xn1b; |
|||
|
|||
Xn6a = pIn[10]; |
|||
d1b += a1 * acc1b; |
|||
|
|||
Xn6b = pIn[11]; |
|||
d2b += a2 * acc1b; |
|||
|
|||
/* Sample 3. 5 cycles */ |
|||
Xn7a = pIn[12]; |
|||
acc2a = b0 * Xn2a + d1a; |
|||
|
|||
Xn7b = pIn[13]; |
|||
d1a = b1 * Xn2a + d2a; |
|||
|
|||
Xn8a = pIn[14]; |
|||
d2a = b2 * Xn2a; |
|||
|
|||
Xn8b = pIn[15]; |
|||
d1a += a1 * acc2a; |
|||
|
|||
pIn += 16; |
|||
d2a += a2 * acc2a; |
|||
|
|||
/* Sample 4. 5 cycles */ |
|||
acc2b = b0 * Xn2b + d1b; |
|||
d1b = b1 * Xn2b + d2b; |
|||
d2b = b2 * Xn2b; |
|||
d1b += a1 * acc2b; |
|||
d2b += a2 * acc2b; |
|||
|
|||
/* Sample 5. 5 cycles */ |
|||
acc3a = b0 * Xn3a + d1a; |
|||
d1a = b1 * Xn3a + d2a; |
|||
d2a = b2 * Xn3a; |
|||
d1a += a1 * acc3a; |
|||
d2a += a2 * acc3a; |
|||
|
|||
/* Sample 6. 5 cycles */ |
|||
acc3b = b0 * Xn3b + d1b; |
|||
d1b = b1 * Xn3b + d2b; |
|||
d2b = b2 * Xn3b; |
|||
d1b += a1 * acc3b; |
|||
d2b += a2 * acc3b; |
|||
|
|||
/* Sample 7. 5 cycles */ |
|||
acc4a = b0 * Xn4a + d1a; |
|||
d1a = b1 * Xn4a + d2a; |
|||
d2a = b2 * Xn4a; |
|||
d1a += a1 * acc4a; |
|||
d2a += a2 * acc4a; |
|||
|
|||
/* Sample 8. 5 cycles */ |
|||
acc4b = b0 * Xn4b + d1b; |
|||
d1b = b1 * Xn4b + d2b; |
|||
d2b = b2 * Xn4b; |
|||
d1b += a1 * acc4b; |
|||
d2b += a2 * acc4b; |
|||
|
|||
/* Sample 9. 5 cycles */ |
|||
acc5a = b0 * Xn5a + d1a; |
|||
d1a = b1 * Xn5a + d2a; |
|||
d2a = b2 * Xn5a; |
|||
d1a += a1 * acc5a; |
|||
d2a += a2 * acc5a; |
|||
|
|||
/* Sample 10. 5 cycles */ |
|||
acc5b = b0 * Xn5b + d1b; |
|||
d1b = b1 * Xn5b + d2b; |
|||
d2b = b2 * Xn5b; |
|||
d1b += a1 * acc5b; |
|||
d2b += a2 * acc5b; |
|||
|
|||
/* Sample 11. 5 cycles */ |
|||
acc6a = b0 * Xn6a + d1a; |
|||
d1a = b1 * Xn6a + d2a; |
|||
d2a = b2 * Xn6a; |
|||
d1a += a1 * acc6a; |
|||
d2a += a2 * acc6a; |
|||
|
|||
/* Sample 12. 5 cycles */ |
|||
acc6b = b0 * Xn6b + d1b; |
|||
d1b = b1 * Xn6b + d2b; |
|||
d2b = b2 * Xn6b; |
|||
d1b += a1 * acc6b; |
|||
d2b += a2 * acc6b; |
|||
|
|||
/* Sample 13. 5 cycles */ |
|||
acc7a = b0 * Xn7a + d1a; |
|||
d1a = b1 * Xn7a + d2a; |
|||
|
|||
pOut[0 ] = acc1a ; |
|||
d2a = b2 * Xn7a; |
|||
|
|||
pOut[1 ] = acc1b ; |
|||
d1a += a1 * acc7a; |
|||
|
|||
pOut[2 ] = acc2a ; |
|||
d2a += a2 * acc7a; |
|||
|
|||
/* Sample 14. 5 cycles */ |
|||
pOut[3 ] = acc2b ; |
|||
acc7b = b0 * Xn7b + d1b; |
|||
|
|||
pOut[4 ] = acc3a ; |
|||
d1b = b1 * Xn7b + d2b; |
|||
|
|||
pOut[5 ] = acc3b ; |
|||
d2b = b2 * Xn7b; |
|||
|
|||
pOut[6 ] = acc4a ; |
|||
d1b += a1 * acc7b; |
|||
|
|||
pOut[7 ] = acc4b ; |
|||
d2b += a2 * acc7b; |
|||
|
|||
/* Sample 15. 5 cycles */ |
|||
pOut[8 ] = acc5a ; |
|||
acc8a = b0 * Xn8a + d1a; |
|||
|
|||
pOut[9 ] = acc5b; |
|||
d1a = b1 * Xn8a + d2a; |
|||
|
|||
pOut[10] = acc6a; |
|||
d2a = b2 * Xn8a; |
|||
|
|||
pOut[11] = acc6b; |
|||
d1a += a1 * acc8a; |
|||
|
|||
pOut[12] = acc7a; |
|||
d2a += a2 * acc8a; |
|||
|
|||
/* Sample 16. 5 cycles */ |
|||
pOut[13] = acc7b; |
|||
acc8b = b0 * Xn8b + d1b; |
|||
|
|||
pOut[14] = acc8a; |
|||
d1b = b1 * Xn8b + d2b; |
|||
|
|||
pOut[15] = acc8b; |
|||
d2b = b2 * Xn8b; |
|||
|
|||
sample--; |
|||
d1b += a1 * acc8b; |
|||
|
|||
pOut += 16; |
|||
d2b += a2 * acc8b; |
|||
} |
|||
|
|||
sample = blockSize & 0x7u; |
|||
while(sample > 0u) { |
|||
/* Read the input */ |
|||
Xn1a = *pIn++; //Channel a |
|||
Xn1b = *pIn++; //Channel b |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
acc1a = (b0 * Xn1a) + d1a; |
|||
acc1b = (b0 * Xn1b) + d1b; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = acc1a; |
|||
*pOut++ = acc1b; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
d1a = ((b1 * Xn1a) + (a1 * acc1a)) + d2a; |
|||
d1b = ((b1 * Xn1b) + (a1 * acc1b)) + d2b; |
|||
|
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
d2a = (b2 * Xn1a) + (a2 * acc1a); |
|||
d2b = (b2 * Xn1b) + (a2 * acc1b); |
|||
|
|||
sample--; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
pState[0] = d1a; |
|||
pState[1] = d2a; |
|||
|
|||
pState[2] = d1b; |
|||
pState[3] = d2b; |
|||
|
|||
/* The current stage input is given as the output to the next stage */ |
|||
pIn = pDst; |
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
pState += 4u; |
|||
/*Reset the output working pointer */ |
|||
pOut = pDst; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#elif defined(ARM_MATH_CM0_FAMILY) |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/*Reading the state values */ |
|||
d1a = pState[0]; |
|||
d2a = pState[1]; |
|||
d1b = pState[2]; |
|||
d2b = pState[3]; |
|||
|
|||
|
|||
sample = blockSize; |
|||
|
|||
while(sample > 0u) |
|||
{ |
|||
/* Read the input */ |
|||
Xn1a = *pIn++; //Channel a |
|||
Xn1b = *pIn++; //Channel b |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
acc1a = (b0 * Xn1a) + d1a; |
|||
acc1b = (b0 * Xn1b) + d1b; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = acc1a; |
|||
*pOut++ = acc1b; |
|||
|
|||
/* Every time after the output is computed state should be updated. */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
d1a = ((b1 * Xn1a) + (a1 * acc1a)) + d2a; |
|||
d1b = ((b1 * Xn1b) + (a1 * acc1b)) + d2b; |
|||
|
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
d2a = (b2 * Xn1a) + (a2 * acc1a); |
|||
d2b = (b2 * Xn1b) + (a2 * acc1b); |
|||
|
|||
/* decrement the loop counter */ |
|||
sample--; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
*pState++ = d1a; |
|||
*pState++ = d2a; |
|||
*pState++ = d1b; |
|||
*pState++ = d2b; |
|||
|
|||
/* The current stage input is given as the output to the next stage */ |
|||
pIn = pDst; |
|||
|
|||
/*Reset the output working pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#else |
|||
|
|||
float32_t Xn2a, Xn3a, Xn4a; /* Input State variables */ |
|||
float32_t Xn2b, Xn3b, Xn4b; /* Input State variables */ |
|||
float32_t acc2a, acc3a, acc4a; /* accumulator */ |
|||
float32_t acc2b, acc3b, acc4b; /* accumulator */ |
|||
float32_t p0a, p1a, p2a, p3a, p4a, A1a; |
|||
float32_t p0b, p1b, p2b, p3b, p4b, A1b; |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
do |
|||
{ |
|||
/* Reading the coefficients */ |
|||
b0 = *pCoeffs++; |
|||
b1 = *pCoeffs++; |
|||
b2 = *pCoeffs++; |
|||
a1 = *pCoeffs++; |
|||
a2 = *pCoeffs++; |
|||
|
|||
/*Reading the state values */ |
|||
d1a = pState[0]; |
|||
d2a = pState[1]; |
|||
d1b = pState[2]; |
|||
d2b = pState[3]; |
|||
|
|||
/* Apply loop unrolling and compute 4 output values simultaneously. */ |
|||
sample = blockSize >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
|||
** a second loop below computes the remaining 1 to 3 samples. */ |
|||
while(sample > 0u) { |
|||
|
|||
/* y[n] = b0 * x[n] + d1 */ |
|||
/* d1 = b1 * x[n] + a1 * y[n] + d2 */ |
|||
/* d2 = b2 * x[n] + a2 * y[n] */ |
|||
|
|||
/* Read the four inputs */ |
|||
Xn1a = pIn[0]; |
|||
Xn1b = pIn[1]; |
|||
Xn2a = pIn[2]; |
|||
Xn2b = pIn[3]; |
|||
Xn3a = pIn[4]; |
|||
Xn3b = pIn[5]; |
|||
Xn4a = pIn[6]; |
|||
Xn4b = pIn[7]; |
|||
pIn += 8; |
|||
|
|||
p0a = b0 * Xn1a; |
|||
p0b = b0 * Xn1b; |
|||
p1a = b1 * Xn1a; |
|||
p1b = b1 * Xn1b; |
|||
acc1a = p0a + d1a; |
|||
acc1b = p0b + d1b; |
|||
p0a = b0 * Xn2a; |
|||
p0b = b0 * Xn2b; |
|||
p3a = a1 * acc1a; |
|||
p3b = a1 * acc1b; |
|||
p2a = b2 * Xn1a; |
|||
p2b = b2 * Xn1b; |
|||
A1a = p1a + p3a; |
|||
A1b = p1b + p3b; |
|||
p4a = a2 * acc1a; |
|||
p4b = a2 * acc1b; |
|||
d1a = A1a + d2a; |
|||
d1b = A1b + d2b; |
|||
d2a = p2a + p4a; |
|||
d2b = p2b + p4b; |
|||
|
|||
p1a = b1 * Xn2a; |
|||
p1b = b1 * Xn2b; |
|||
acc2a = p0a + d1a; |
|||
acc2b = p0b + d1b; |
|||
p0a = b0 * Xn3a; |
|||
p0b = b0 * Xn3b; |
|||
p3a = a1 * acc2a; |
|||
p3b = a1 * acc2b; |
|||
p2a = b2 * Xn2a; |
|||
p2b = b2 * Xn2b; |
|||
A1a = p1a + p3a; |
|||
A1b = p1b + p3b; |
|||
p4a = a2 * acc2a; |
|||
p4b = a2 * acc2b; |
|||
d1a = A1a + d2a; |
|||
d1b = A1b + d2b; |
|||
d2a = p2a + p4a; |
|||
d2b = p2b + p4b; |
|||
|
|||
p1a = b1 * Xn3a; |
|||
p1b = b1 * Xn3b; |
|||
acc3a = p0a + d1a; |
|||
acc3b = p0b + d1b; |
|||
p0a = b0 * Xn4a; |
|||
p0b = b0 * Xn4b; |
|||
p3a = a1 * acc3a; |
|||
p3b = a1 * acc3b; |
|||
p2a = b2 * Xn3a; |
|||
p2b = b2 * Xn3b; |
|||
A1a = p1a + p3a; |
|||
A1b = p1b + p3b; |
|||
p4a = a2 * acc3a; |
|||
p4b = a2 * acc3b; |
|||
d1a = A1a + d2a; |
|||
d1b = A1b + d2b; |
|||
d2a = p2a + p4a; |
|||
d2b = p2b + p4b; |
|||
|
|||
acc4a = p0a + d1a; |
|||
acc4b = p0b + d1b; |
|||
p1a = b1 * Xn4a; |
|||
p1b = b1 * Xn4b; |
|||
p3a = a1 * acc4a; |
|||
p3b = a1 * acc4b; |
|||
p2a = b2 * Xn4a; |
|||
p2b = b2 * Xn4b; |
|||
A1a = p1a + p3a; |
|||
A1b = p1b + p3b; |
|||
p4a = a2 * acc4a; |
|||
p4b = a2 * acc4b; |
|||
d1a = A1a + d2a; |
|||
d1b = A1b + d2b; |
|||
d2a = p2a + p4a; |
|||
d2b = p2b + p4b; |
|||
|
|||
pOut[0] = acc1a; |
|||
pOut[1] = acc1b; |
|||
pOut[2] = acc2a; |
|||
pOut[3] = acc2b; |
|||
pOut[4] = acc3a; |
|||
pOut[5] = acc3b; |
|||
pOut[6] = acc4a; |
|||
pOut[7] = acc4b; |
|||
pOut += 8; |
|||
|
|||
sample--; |
|||
} |
|||
|
|||
sample = blockSize & 0x3u; |
|||
while(sample > 0u) { |
|||
Xn1a = *pIn++; |
|||
Xn1b = *pIn++; |
|||
|
|||
p0a = b0 * Xn1a; |
|||
p0b = b0 * Xn1b; |
|||
p1a = b1 * Xn1a; |
|||
p1b = b1 * Xn1b; |
|||
acc1a = p0a + d1a; |
|||
acc1b = p0b + d1b; |
|||
p3a = a1 * acc1a; |
|||
p3b = a1 * acc1b; |
|||
p2a = b2 * Xn1a; |
|||
p2b = b2 * Xn1b; |
|||
A1a = p1a + p3a; |
|||
A1b = p1b + p3b; |
|||
p4a = a2 * acc1a; |
|||
p4b = a2 * acc1b; |
|||
d1a = A1a + d2a; |
|||
d1b = A1b + d2b; |
|||
d2a = p2a + p4a; |
|||
d2b = p2b + p4b; |
|||
|
|||
*pOut++ = acc1a; |
|||
*pOut++ = acc1b; |
|||
|
|||
sample--; |
|||
} |
|||
|
|||
/* Store the updated state variables back into the state array */ |
|||
*pState++ = d1a; |
|||
*pState++ = d2a; |
|||
*pState++ = d1b; |
|||
*pState++ = d2b; |
|||
|
|||
/* The current stage input is given as the output to the next stage */ |
|||
pIn = pDst; |
|||
|
|||
/*Reset the output working pointer */ |
|||
pOut = pDst; |
|||
|
|||
/* decrement the loop counter */ |
|||
stage--; |
|||
|
|||
} while(stage > 0u); |
|||
|
|||
#endif |
|||
|
|||
} |
|||
LOW_OPTIMIZATION_EXIT |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF2T group |
|||
*/ |
@ -0,0 +1,102 @@ |
|||
/*----------------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_biquad_cascade_stereo_df2T_init_f32.c |
|||
* |
|||
* Description: Initialization function for the floating-point transposed |
|||
* direct form II Biquad cascade filter. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* ---------------------------------------------------------------------------*/ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup BiquadCascadeDF2T |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter. |
|||
* @param[in,out] *S points to an instance of the filter data structure. |
|||
* @param[in] numStages number of 2nd order stages in the filter. |
|||
* @param[in] *pCoeffs points to the filter coefficients. |
|||
* @param[in] *pState points to the state buffer. |
|||
* @return none |
|||
* |
|||
* <b>Coefficient and State Ordering:</b> |
|||
* \par |
|||
* The coefficients are stored in the array <code>pCoeffs</code> in the following order: |
|||
* <pre> |
|||
* {b10, b11, b12, a11, a12, b20, b21, b22, a21, a22, ...} |
|||
* </pre> |
|||
* |
|||
* \par |
|||
* where <code>b1x</code> and <code>a1x</code> are the coefficients for the first stage, |
|||
* <code>b2x</code> and <code>a2x</code> are the coefficients for the second stage, |
|||
* and so on. The <code>pCoeffs</code> array contains a total of <code>5*numStages</code> values. |
|||
* |
|||
* \par |
|||
* The <code>pState</code> is a pointer to state array. |
|||
* Each Biquad stage has 2 state variables <code>d1,</code> and <code>d2</code> for each channel. |
|||
* The 2 state variables for stage 1 are first, then the 2 state variables for stage 2, and so on. |
|||
* The state array has a total length of <code>2*numStages</code> values. |
|||
* The state variables are updated after each block of data is processed; the coefficients are untouched. |
|||
*/ |
|||
|
|||
void arm_biquad_cascade_stereo_df2T_init_f32( |
|||
arm_biquad_cascade_stereo_df2T_instance_f32 * S, |
|||
uint8_t numStages, |
|||
float32_t * pCoeffs, |
|||
float32_t * pState) |
|||
{ |
|||
/* Assign filter stages */ |
|||
S->numStages = numStages; |
|||
|
|||
/* Assign coefficient pointer */ |
|||
S->pCoeffs = pCoeffs; |
|||
|
|||
/* Clear state buffer and size is always 4 * numStages */ |
|||
memset(pState, 0, (4u * (uint32_t) numStages) * sizeof(float32_t)); |
|||
|
|||
/* Assign state pointer */ |
|||
S->pState = pState; |
|||
} |
|||
|
|||
/** |
|||
* @} end of BiquadCascadeDF2T group |
|||
*/ |
@ -0,0 +1,647 @@ |
|||
/* ---------------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_f32.c |
|||
* |
|||
* Description: Convolution of floating-point sequences. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup Conv Convolution |
|||
* |
|||
* Convolution is a mathematical operation that operates on two finite length vectors to generate a finite length output vector. |
|||
* Convolution is similar to correlation and is frequently used in filtering and data analysis. |
|||
* The CMSIS DSP library contains functions for convolving Q7, Q15, Q31, and floating-point data types. |
|||
* The library also provides fast versions of the Q15 and Q31 functions on Cortex-M4 and Cortex-M3. |
|||
* |
|||
* \par Algorithm |
|||
* Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively. |
|||
* Then the convolution |
|||
* |
|||
* <pre> |
|||
* c[n] = a[n] * b[n] |
|||
* </pre> |
|||
* |
|||
* \par |
|||
* is defined as |
|||
* \image html ConvolutionEquation.gif |
|||
* \par |
|||
* Note that <code>c[n]</code> is of length <code>srcALen + srcBLen - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., srcALen + srcBLen - 2</code>. |
|||
* <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and |
|||
* <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>. |
|||
* The output result is written to <code>pDst</code> and the calling function must allocate <code>srcALen+srcBLen-1</code> words for the result. |
|||
* |
|||
* \par |
|||
* Conceptually, when two signals <code>a[n]</code> and <code>b[n]</code> are convolved, |
|||
* the signal <code>b[n]</code> slides over <code>a[n]</code>. |
|||
* For each offset \c n, the overlapping portions of a[n] and b[n] are multiplied and summed together. |
|||
* |
|||
* \par |
|||
* Note that convolution is a commutative operation: |
|||
* |
|||
* <pre> |
|||
* a[n] * b[n] = b[n] * a[n]. |
|||
* </pre> |
|||
* |
|||
* \par |
|||
* This means that switching the A and B arguments to the convolution functions has no effect. |
|||
* |
|||
* <b>Fixed-Point Behavior</b> |
|||
* |
|||
* \par |
|||
* Convolution requires summing up a large number of intermediate products. |
|||
* As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation. |
|||
* Refer to the function specific documentation below for further details of the particular algorithm used. |
|||
* |
|||
* |
|||
* <b>Fast Versions</b> |
|||
* |
|||
* \par |
|||
* Fast versions are supported for Q31 and Q15. Cycles for Fast versions are less compared to Q31 and Q15 of conv and the design requires |
|||
* the input signals should be scaled down to avoid intermediate overflows. |
|||
* |
|||
* |
|||
* <b>Opt Versions</b> |
|||
* |
|||
* \par |
|||
* Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation. |
|||
* These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup Conv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Convolution of floating-point sequences. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
|||
* @return none. |
|||
*/ |
|||
|
|||
void arm_conv_f32( |
|||
float32_t * pSrcA, |
|||
uint32_t srcALen, |
|||
float32_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
float32_t * pDst) |
|||
{ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
float32_t *pIn1; /* inputA pointer */ |
|||
float32_t *pIn2; /* inputB pointer */ |
|||
float32_t *pOut = pDst; /* output pointer */ |
|||
float32_t *px; /* Intermediate inputA pointer */ |
|||
float32_t *py; /* Intermediate inputB pointer */ |
|||
float32_t *pSrc1, *pSrc2; /* Intermediate pointers */ |
|||
float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ |
|||
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counters */ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ |
|||
/* The function is internally |
|||
* divided into three stages according to the number of multiplications that has to be |
|||
* taken place between inputA samples and inputB samples. In the first stage of the |
|||
* algorithm, the multiplications increase by one for every iteration. |
|||
* In the second stage of the algorithm, srcBLen number of multiplications are done. |
|||
* In the third stage of the algorithm, the multiplications decrease by one |
|||
* for every iteration. */ |
|||
|
|||
/* The algorithm is implemented in three stages. |
|||
The loop counters of each stage is initiated here. */ |
|||
blockSize1 = srcBLen - 1u; |
|||
blockSize2 = srcALen - (srcBLen - 1u); |
|||
blockSize3 = blockSize1; |
|||
|
|||
/* -------------------------- |
|||
* initializations of stage1 |
|||
* -------------------------*/ |
|||
|
|||
/* sum = x[0] * y[0] |
|||
* sum = x[0] * y[1] + x[1] * y[0] |
|||
* .... |
|||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are increased by 1 for every iteration. |
|||
The count variable holds the number of MAC operations performed */ |
|||
count = 1u; |
|||
|
|||
/* Working pointer of inputA */ |
|||
px = pIn1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
py = pIn2; |
|||
|
|||
|
|||
/* ------------------------ |
|||
* Stage1 process |
|||
* ----------------------*/ |
|||
|
|||
/* The first stage starts here */ |
|||
while(blockSize1 > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0.0f; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = count >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* x[0] * y[srcBLen - 1] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* x[1] * y[srcBLen - 2] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* x[2] * y[srcBLen - 3] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* x[3] * y[srcBLen - 4] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = count % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
py = pIn2 + count; |
|||
px = pIn1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize1--; |
|||
} |
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage2 |
|||
* ------------------------*/ |
|||
|
|||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] |
|||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] |
|||
* .... |
|||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] |
|||
*/ |
|||
|
|||
/* Working pointer of inputA */ |
|||
px = pIn1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
py = pSrc2; |
|||
|
|||
/* count is index by which the pointer pIn1 to be incremented */ |
|||
count = 0u; |
|||
|
|||
/* ------------------- |
|||
* Stage2 process |
|||
* ------------------*/ |
|||
|
|||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. |
|||
* So, to loop unroll over blockSize2, |
|||
* srcBLen should be greater than or equal to 4 */ |
|||
if(srcBLen >= 4u) |
|||
{ |
|||
/* Loop unroll over blockSize2, by 4 */ |
|||
blkCnt = blockSize2 >> 2u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Set all accumulators to zero */ |
|||
acc0 = 0.0f; |
|||
acc1 = 0.0f; |
|||
acc2 = 0.0f; |
|||
acc3 = 0.0f; |
|||
|
|||
/* read x[0], x[1], x[2] samples */ |
|||
x0 = *(px++); |
|||
x1 = *(px++); |
|||
x2 = *(px++); |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
do |
|||
{ |
|||
/* Read y[srcBLen - 1] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[3] sample */ |
|||
x3 = *(px); |
|||
|
|||
/* Perform the multiply-accumulate */ |
|||
/* acc0 += x[0] * y[srcBLen - 1] */ |
|||
acc0 += x0 * c0; |
|||
|
|||
/* acc1 += x[1] * y[srcBLen - 1] */ |
|||
acc1 += x1 * c0; |
|||
|
|||
/* acc2 += x[2] * y[srcBLen - 1] */ |
|||
acc2 += x2 * c0; |
|||
|
|||
/* acc3 += x[3] * y[srcBLen - 1] */ |
|||
acc3 += x3 * c0; |
|||
|
|||
/* Read y[srcBLen - 2] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[4] sample */ |
|||
x0 = *(px + 1u); |
|||
|
|||
/* Perform the multiply-accumulate */ |
|||
/* acc0 += x[1] * y[srcBLen - 2] */ |
|||
acc0 += x1 * c0; |
|||
/* acc1 += x[2] * y[srcBLen - 2] */ |
|||
acc1 += x2 * c0; |
|||
/* acc2 += x[3] * y[srcBLen - 2] */ |
|||
acc2 += x3 * c0; |
|||
/* acc3 += x[4] * y[srcBLen - 2] */ |
|||
acc3 += x0 * c0; |
|||
|
|||
/* Read y[srcBLen - 3] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[5] sample */ |
|||
x1 = *(px + 2u); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[2] * y[srcBLen - 3] */ |
|||
acc0 += x2 * c0; |
|||
/* acc1 += x[3] * y[srcBLen - 2] */ |
|||
acc1 += x3 * c0; |
|||
/* acc2 += x[4] * y[srcBLen - 2] */ |
|||
acc2 += x0 * c0; |
|||
/* acc3 += x[5] * y[srcBLen - 2] */ |
|||
acc3 += x1 * c0; |
|||
|
|||
/* Read y[srcBLen - 4] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[6] sample */ |
|||
x2 = *(px + 3u); |
|||
px += 4u; |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[3] * y[srcBLen - 4] */ |
|||
acc0 += x3 * c0; |
|||
/* acc1 += x[4] * y[srcBLen - 4] */ |
|||
acc1 += x0 * c0; |
|||
/* acc2 += x[5] * y[srcBLen - 4] */ |
|||
acc2 += x1 * c0; |
|||
/* acc3 += x[6] * y[srcBLen - 4] */ |
|||
acc3 += x2 * c0; |
|||
|
|||
|
|||
} while(--k); |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Read y[srcBLen - 5] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[7] sample */ |
|||
x3 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[4] * y[srcBLen - 5] */ |
|||
acc0 += x0 * c0; |
|||
/* acc1 += x[5] * y[srcBLen - 5] */ |
|||
acc1 += x1 * c0; |
|||
/* acc2 += x[6] * y[srcBLen - 5] */ |
|||
acc2 += x2 * c0; |
|||
/* acc3 += x[7] * y[srcBLen - 5] */ |
|||
acc3 += x3 * c0; |
|||
|
|||
/* Reuse the present samples for the next MAC */ |
|||
x0 = x1; |
|||
x1 = x2; |
|||
x2 = x3; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = acc0; |
|||
*pOut++ = acc1; |
|||
*pOut++ = acc2; |
|||
*pOut++ = acc3; |
|||
|
|||
/* Increment the pointer pIn1 index, count by 4 */ |
|||
count += 4u; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
|
|||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize2 % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0.0f; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum += *px++ * *py--; |
|||
sum += *px++ * *py--; |
|||
sum += *px++ * *py--; |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
/* If the srcBLen is not a multiple of 4, |
|||
* the blockSize2 loop cannot be unrolled by 4 */ |
|||
blkCnt = blockSize2; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0.0f; |
|||
|
|||
/* srcBLen number of MACS should be performed */ |
|||
k = srcBLen; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage3 |
|||
* -------------------------*/ |
|||
|
|||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] |
|||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] |
|||
* .... |
|||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] |
|||
* sum += x[srcALen-1] * y[srcBLen-1] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are decreased by 1 for every iteration. |
|||
The blockSize3 variable holds the number of MAC operations performed */ |
|||
|
|||
/* Working pointer of inputA */ |
|||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); |
|||
px = pSrc1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
py = pSrc2; |
|||
|
|||
/* ------------------- |
|||
* Stage3 process |
|||
* ------------------*/ |
|||
|
|||
while(blockSize3 > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0.0f; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = blockSize3 >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = blockSize3 % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
/* sum += x[srcALen-1] * y[srcBLen-1] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = ++pSrc1; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize3--; |
|||
} |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
float32_t *pIn1 = pSrcA; /* inputA pointer */ |
|||
float32_t *pIn2 = pSrcB; /* inputB pointer */ |
|||
float32_t sum; /* Accumulator */ |
|||
uint32_t i, j; /* loop counters */ |
|||
|
|||
/* Loop to calculate convolution for output length number of times */ |
|||
for (i = 0u; i < ((srcALen + srcBLen) - 1u); i++) |
|||
{ |
|||
/* Initialize sum with zero to carry out MAC operations */ |
|||
sum = 0.0f; |
|||
|
|||
/* Loop to perform MAC operations according to convolution equation */ |
|||
for (j = 0u; j <= i; j++) |
|||
{ |
|||
/* Check the array limitations */ |
|||
if((((i - j) < srcBLen) && (j < srcALen))) |
|||
{ |
|||
/* z[i] += x[i-j] * y[j] */ |
|||
sum += pIn1[j] * pIn2[i - j]; |
|||
} |
|||
} |
|||
/* Store the output in the destination buffer */ |
|||
pDst[i] = sum; |
|||
} |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of Conv group |
|||
*/ |
@ -0,0 +1,543 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_fast_opt_q15.c |
|||
* |
|||
* Description: Fast Q15 Convolution. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup Conv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
|||
* @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|||
* @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
|||
* @return none. |
|||
* |
|||
* \par Restrictions |
|||
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE |
|||
* In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit |
|||
* |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* |
|||
* \par |
|||
* This fast version uses a 32-bit accumulator with 2.30 format. |
|||
* The accumulator maintains full precision of the intermediate multiplication results |
|||
* but provides only a single guard bit. There is no saturation on intermediate additions. |
|||
* Thus, if the accumulator overflows it wraps around and distorts the result. |
|||
* The input signals should be scaled down to avoid intermediate overflows. |
|||
* Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows, |
|||
* as maximum of min(srcALen, srcBLen) number of additions are carried internally. |
|||
* The 2.30 accumulator is right shifted by 15 bits and then saturated to 1.15 format to yield the final result. |
|||
* |
|||
* \par |
|||
* See <code>arm_conv_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion. |
|||
*/ |
|||
|
|||
void arm_conv_fast_opt_q15( |
|||
q15_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q15_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q15_t * pDst, |
|||
q15_t * pScratch1, |
|||
q15_t * pScratch2) |
|||
{ |
|||
q31_t acc0, acc1, acc2, acc3; /* Accumulators */ |
|||
q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */ |
|||
q31_t y1, y2; /* State variables */ |
|||
q15_t *pOut = pDst; /* output pointer */ |
|||
q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */ |
|||
q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */ |
|||
q15_t *pIn1; /* inputA pointer */ |
|||
q15_t *pIn2; /* inputB pointer */ |
|||
q15_t *px; /* Intermediate inputA pointer */ |
|||
q15_t *py; /* Intermediate inputB pointer */ |
|||
uint32_t j, k, blkCnt; /* loop counter */ |
|||
uint32_t tapCnt; /* loop count */ |
|||
#ifdef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
q15_t a, b; |
|||
|
|||
#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* Pointer to take end of scratch2 buffer */ |
|||
pScr2 = pScratch2 + srcBLen - 1; |
|||
|
|||
/* points to smaller length sequence */ |
|||
px = pIn2; |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
|
|||
/* Copy smaller length input sequence in reverse order into second scratch buffer */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Initialze temporary scratch pointer */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Assuming scratch1 buffer is aligned by 32-bit */ |
|||
/* Fill (srcBLen - 1u) zeros in scratch1 buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update temporary scratch pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Copy bigger length sequence(srcALen) samples in scratch1 buffer */ |
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
/* Copy (srcALen) samples in scratch buffer */ |
|||
arm_copy_q15(pIn1, pScr1, srcALen); |
|||
|
|||
/* Update pointers */ |
|||
pScr1 += srcALen; |
|||
|
|||
#else |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcALen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcALen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = *pIn1++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
|||
|
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
/* Fill (srcBLen - 1u) zeros at end of scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
#else |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = (srcBLen - 1u) >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = (srcBLen - 1u) % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
|||
|
|||
/* Temporary pointer for scratch2 */ |
|||
py = pScratch2; |
|||
|
|||
|
|||
/* Initialization of pIn2 pointer */ |
|||
pIn2 = py; |
|||
|
|||
/* First part of the processing with loop unrolling process 4 data points at a time. |
|||
** a second loop below process for the remaining 1 to 3 samples. */ |
|||
|
|||
/* Actual convolution process starts here */ |
|||
blkCnt = (srcALen + srcBLen - 1u) >> 2; |
|||
|
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* Read two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x2 = *__SIMD32(pScr1)++; |
|||
|
|||
tapCnt = (srcBLen) >> 2u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
y1 = _SIMD32_OFFSET(pIn2); |
|||
y2 = _SIMD32_OFFSET(pIn2 + 2u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLAD(x1, y1, acc0); |
|||
acc2 = __SMLAD(x2, y1, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
/* multiply and accumlate */ |
|||
acc1 = __SMLADX(x3, y1, acc1); |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x1 = _SIMD32_OFFSET(pScr1); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLAD(x2, y2, acc0); |
|||
acc2 = __SMLAD(x1, y2, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#else |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y1, acc3); |
|||
acc1 = __SMLADX(x3, y2, acc1); |
|||
|
|||
x2 = _SIMD32_OFFSET(pScr1 + 2u); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y2, acc3); |
|||
|
|||
#else |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
a = *pIn2; |
|||
b = *(pIn2 + 1); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
y1 = __PKHBT(a, b, 16); |
|||
#else |
|||
y1 = __PKHBT(b, a, 16); |
|||
#endif |
|||
|
|||
a = *(pIn2 + 2); |
|||
b = *(pIn2 + 3); |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
y2 = __PKHBT(a, b, 16); |
|||
#else |
|||
y2 = __PKHBT(b, a, 16); |
|||
#endif |
|||
|
|||
acc0 = __SMLAD(x1, y1, acc0); |
|||
|
|||
acc2 = __SMLAD(x2, y1, acc2); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc1 = __SMLADX(x3, y1, acc1); |
|||
|
|||
a = *pScr1; |
|||
b = *(pScr1 + 1); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x1 = __PKHBT(a, b, 16); |
|||
#else |
|||
x1 = __PKHBT(b, a, 16); |
|||
#endif |
|||
|
|||
acc0 = __SMLAD(x2, y2, acc0); |
|||
|
|||
acc2 = __SMLAD(x1, y2, acc2); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#else |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y1, acc3); |
|||
|
|||
acc1 = __SMLADX(x3, y2, acc1); |
|||
|
|||
a = *(pScr1 + 2); |
|||
b = *(pScr1 + 3); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x2 = __PKHBT(a, b, 16); |
|||
#else |
|||
x2 = __PKHBT(b, a, 16); |
|||
#endif |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y2, acc3); |
|||
|
|||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
|||
|
|||
/* update scratch pointers */ |
|||
pIn2 += 4u; |
|||
pScr1 += 4u; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
/* Update scratch pointer for remaining samples of smaller length sequence */ |
|||
pScr1 -= 4u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
tapCnt = (srcBLen) & 3u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2); |
|||
acc1 += (*pScr1++ * *pIn2); |
|||
acc2 += (*pScr1++ * *pIn2); |
|||
acc3 += (*pScr1++ * *pIn2++); |
|||
|
|||
pScr1 -= 3u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
|
|||
/* Store the results in the accumulators in the destination buffer. */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); |
|||
|
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); |
|||
|
|||
|
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 4u; |
|||
|
|||
} |
|||
|
|||
|
|||
blkCnt = (srcALen + srcBLen - 1u) & 0x3; |
|||
|
|||
/* Calculate convolution for remaining samples of Bigger length sequence */ |
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
|
|||
tapCnt = (srcBLen) >> 1u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
tapCnt = (srcBLen) & 1u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* The result is in 2.30 format. Convert to 1.15 with saturation. |
|||
** Then store the output in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16)); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 1u; |
|||
|
|||
} |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of Conv group |
|||
*/ |
1410
lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_fast_q15.c
File diff suppressed because it is too large
View File
File diff suppressed because it is too large
View File
@ -0,0 +1,577 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_fast_q31.c |
|||
* |
|||
* Description: Q31 Convolution (fast version). |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup Conv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
|||
* @return none. |
|||
* |
|||
* @details |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* |
|||
* \par |
|||
* This function is optimized for speed at the expense of fixed-point precision and overflow protection. |
|||
* The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format. |
|||
* These intermediate results are accumulated in a 32-bit register in 2.30 format. |
|||
* Finally, the accumulator is saturated and converted to a 1.31 result. |
|||
* |
|||
* \par |
|||
* The fast version has the same overflow behavior as the standard version but provides less precision since it discards the low 32 bits of each multiplication result. |
|||
* In order to avoid overflows completely the input signals must be scaled down. |
|||
* Scale down the inputs by log2(min(srcALen, srcBLen)) (log2 is read as log to the base 2) times to avoid overflows, |
|||
* as maximum of min(srcALen, srcBLen) number of additions are carried internally. |
|||
* |
|||
* \par |
|||
* See <code>arm_conv_q31()</code> for a slower implementation of this function which uses 64-bit accumulation to provide higher precision. |
|||
*/ |
|||
|
|||
void arm_conv_fast_q31( |
|||
q31_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q31_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q31_t * pDst) |
|||
{ |
|||
q31_t *pIn1; /* inputA pointer */ |
|||
q31_t *pIn2; /* inputB pointer */ |
|||
q31_t *pOut = pDst; /* output pointer */ |
|||
q31_t *px; /* Intermediate inputA pointer */ |
|||
q31_t *py; /* Intermediate inputB pointer */ |
|||
q31_t *pSrc1, *pSrc2; /* Intermediate pointers */ |
|||
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ |
|||
uint32_t j, k, count, blkCnt, blockSize1, blockSize2, blockSize3; /* loop counter */ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ |
|||
/* The function is internally |
|||
* divided into three stages according to the number of multiplications that has to be |
|||
* taken place between inputA samples and inputB samples. In the first stage of the |
|||
* algorithm, the multiplications increase by one for every iteration. |
|||
* In the second stage of the algorithm, srcBLen number of multiplications are done. |
|||
* In the third stage of the algorithm, the multiplications decrease by one |
|||
* for every iteration. */ |
|||
|
|||
/* The algorithm is implemented in three stages. |
|||
The loop counters of each stage is initiated here. */ |
|||
blockSize1 = srcBLen - 1u; |
|||
blockSize2 = srcALen - (srcBLen - 1u); |
|||
blockSize3 = blockSize1; |
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage1 |
|||
* -------------------------*/ |
|||
|
|||
/* sum = x[0] * y[0] |
|||
* sum = x[0] * y[1] + x[1] * y[0] |
|||
* .... |
|||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are increased by 1 for every iteration. |
|||
The count variable holds the number of MAC operations performed */ |
|||
count = 1u; |
|||
|
|||
/* Working pointer of inputA */ |
|||
px = pIn1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
py = pIn2; |
|||
|
|||
|
|||
/* ------------------------ |
|||
* Stage1 process |
|||
* ----------------------*/ |
|||
|
|||
/* The first stage starts here */ |
|||
while(blockSize1 > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = count >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* x[0] * y[srcBLen - 1] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* x[1] * y[srcBLen - 2] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* x[2] * y[srcBLen - 3] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* x[3] * y[srcBLen - 4] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = count % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum << 1; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
py = pIn2 + count; |
|||
px = pIn1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize1--; |
|||
} |
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage2 |
|||
* ------------------------*/ |
|||
|
|||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] |
|||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] |
|||
* .... |
|||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] |
|||
*/ |
|||
|
|||
/* Working pointer of inputA */ |
|||
px = pIn1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
py = pSrc2; |
|||
|
|||
/* count is index by which the pointer pIn1 to be incremented */ |
|||
count = 0u; |
|||
|
|||
/* ------------------- |
|||
* Stage2 process |
|||
* ------------------*/ |
|||
|
|||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. |
|||
* So, to loop unroll over blockSize2, |
|||
* srcBLen should be greater than or equal to 4 */ |
|||
if(srcBLen >= 4u) |
|||
{ |
|||
/* Loop unroll over blockSize2, by 4 */ |
|||
blkCnt = blockSize2 >> 2u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Set all accumulators to zero */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* read x[0], x[1], x[2] samples */ |
|||
x0 = *(px++); |
|||
x1 = *(px++); |
|||
x2 = *(px++); |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
do |
|||
{ |
|||
/* Read y[srcBLen - 1] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[3] sample */ |
|||
x3 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[0] * y[srcBLen - 1] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
|
|||
/* acc1 += x[1] * y[srcBLen - 1] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
|
|||
/* acc2 += x[2] * y[srcBLen - 1] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
|
|||
/* acc3 += x[3] * y[srcBLen - 1] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
|
|||
/* Read y[srcBLen - 2] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[4] sample */ |
|||
x0 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulate */ |
|||
/* acc0 += x[1] * y[srcBLen - 2] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
/* acc1 += x[2] * y[srcBLen - 2] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
/* acc2 += x[3] * y[srcBLen - 2] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
/* acc3 += x[4] * y[srcBLen - 2] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
|
|||
/* Read y[srcBLen - 3] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[5] sample */ |
|||
x1 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[2] * y[srcBLen - 3] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
/* acc1 += x[3] * y[srcBLen - 3] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
/* acc2 += x[4] * y[srcBLen - 3] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
/* acc3 += x[5] * y[srcBLen - 3] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
|
|||
/* Read y[srcBLen - 4] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[6] sample */ |
|||
x2 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[3] * y[srcBLen - 4] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
/* acc1 += x[4] * y[srcBLen - 4] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
/* acc2 += x[5] * y[srcBLen - 4] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
/* acc3 += x[6] * y[srcBLen - 4] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
|
|||
|
|||
} while(--k); |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Read y[srcBLen - 5] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[7] sample */ |
|||
x3 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[4] * y[srcBLen - 5] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
/* acc1 += x[5] * y[srcBLen - 5] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
/* acc2 += x[6] * y[srcBLen - 5] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
/* acc3 += x[7] * y[srcBLen - 5] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
|
|||
/* Reuse the present samples for the next MAC */ |
|||
x0 = x1; |
|||
x1 = x2; |
|||
x2 = x3; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the results in the accumulators in the destination buffer. */ |
|||
*pOut++ = (q31_t) (acc0 << 1); |
|||
*pOut++ = (q31_t) (acc1 << 1); |
|||
*pOut++ = (q31_t) (acc2 << 1); |
|||
*pOut++ = (q31_t) (acc3 << 1); |
|||
|
|||
/* Increment the pointer pIn1 index, count by 4 */ |
|||
count += 4u; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = blockSize2 % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum << 1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
/* If the srcBLen is not a multiple of 4, |
|||
* the blockSize2 loop cannot be unrolled by 4 */ |
|||
blkCnt = blockSize2; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* srcBLen number of MACS should be performed */ |
|||
k = srcBLen; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum << 1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage3 |
|||
* -------------------------*/ |
|||
|
|||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] |
|||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] |
|||
* .... |
|||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] |
|||
* sum += x[srcALen-1] * y[srcBLen-1] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are decreased by 1 for every iteration. |
|||
The blockSize3 variable holds the number of MAC operations performed */ |
|||
|
|||
/* Working pointer of inputA */ |
|||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); |
|||
px = pSrc1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
py = pSrc2; |
|||
|
|||
/* ------------------- |
|||
* Stage3 process |
|||
* ------------------*/ |
|||
|
|||
while(blockSize3 > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = blockSize3 >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the blockSize3 is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = blockSize3 % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum << 1; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = ++pSrc1; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize3--; |
|||
} |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of Conv group |
|||
*/ |
@ -0,0 +1,545 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_opt_q15.c |
|||
* |
|||
* Description: Convolution of Q15 sequences. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup Conv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Convolution of Q15 sequences. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
|||
* @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|||
* @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
|||
* @return none. |
|||
* |
|||
* \par Restrictions |
|||
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE |
|||
* In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit |
|||
* |
|||
* |
|||
* @details |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* |
|||
* \par |
|||
* The function is implemented using a 64-bit internal accumulator. |
|||
* Both inputs are in 1.15 format and multiplications yield a 2.30 result. |
|||
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format. |
|||
* This approach provides 33 guard bits and there is no risk of overflow. |
|||
* The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format. |
|||
* |
|||
* |
|||
* \par |
|||
* Refer to <code>arm_conv_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4. |
|||
* |
|||
* |
|||
*/ |
|||
|
|||
void arm_conv_opt_q15( |
|||
q15_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q15_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q15_t * pDst, |
|||
q15_t * pScratch1, |
|||
q15_t * pScratch2) |
|||
{ |
|||
q63_t acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */ |
|||
q31_t y1, y2; /* State variables */ |
|||
q15_t *pOut = pDst; /* output pointer */ |
|||
q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */ |
|||
q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */ |
|||
q15_t *pIn1; /* inputA pointer */ |
|||
q15_t *pIn2; /* inputB pointer */ |
|||
q15_t *px; /* Intermediate inputA pointer */ |
|||
q15_t *py; /* Intermediate inputB pointer */ |
|||
uint32_t j, k, blkCnt; /* loop counter */ |
|||
uint32_t tapCnt; /* loop count */ |
|||
#ifdef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
q15_t a, b; |
|||
|
|||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
|
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* pointer to take end of scratch2 buffer */ |
|||
pScr2 = pScratch2 + srcBLen - 1; |
|||
|
|||
/* points to smaller length sequence */ |
|||
px = pIn2; |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
/* Copy smaller length input sequence in reverse order into second scratch buffer */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Initialze temporary scratch pointer */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Assuming scratch1 buffer is aligned by 32-bit */ |
|||
/* Fill (srcBLen - 1u) zeros in scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update temporary scratch pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Copy bigger length sequence(srcALen) samples in scratch1 buffer */ |
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
/* Copy (srcALen) samples in scratch buffer */ |
|||
arm_copy_q15(pIn1, pScr1, srcALen); |
|||
|
|||
/* Update pointers */ |
|||
pScr1 += srcALen; |
|||
|
|||
#else |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcALen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcALen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = *pIn1++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
#endif |
|||
|
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
/* Fill (srcBLen - 1u) zeros at end of scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
#else |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = (srcBLen - 1u) >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = (srcBLen - 1u) % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
#endif |
|||
|
|||
/* Temporary pointer for scratch2 */ |
|||
py = pScratch2; |
|||
|
|||
|
|||
/* Initialization of pIn2 pointer */ |
|||
pIn2 = py; |
|||
|
|||
/* First part of the processing with loop unrolling process 4 data points at a time. |
|||
** a second loop below process for the remaining 1 to 3 samples. */ |
|||
|
|||
/* Actual convolution process starts here */ |
|||
blkCnt = (srcALen + srcBLen - 1u) >> 2; |
|||
|
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* Read two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x2 = *__SIMD32(pScr1)++; |
|||
|
|||
tapCnt = (srcBLen) >> 2u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
y1 = _SIMD32_OFFSET(pIn2); |
|||
y2 = _SIMD32_OFFSET(pIn2 + 2u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLALD(x1, y1, acc0); |
|||
acc2 = __SMLALD(x2, y1, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
/* multiply and accumlate */ |
|||
acc1 = __SMLALDX(x3, y1, acc1); |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x1 = _SIMD32_OFFSET(pScr1); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLALD(x2, y2, acc0); |
|||
acc2 = __SMLALD(x1, y2, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#else |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLALDX(x3, y1, acc3); |
|||
acc1 = __SMLALDX(x3, y2, acc1); |
|||
|
|||
x2 = _SIMD32_OFFSET(pScr1 + 2u); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLALDX(x3, y2, acc3); |
|||
|
|||
#else |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
a = *pIn2; |
|||
b = *(pIn2 + 1); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
y1 = __PKHBT(a, b, 16); |
|||
#else |
|||
y1 = __PKHBT(b, a, 16); |
|||
#endif |
|||
|
|||
a = *(pIn2 + 2); |
|||
b = *(pIn2 + 3); |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
y2 = __PKHBT(a, b, 16); |
|||
#else |
|||
y2 = __PKHBT(b, a, 16); |
|||
#endif |
|||
|
|||
acc0 = __SMLALD(x1, y1, acc0); |
|||
|
|||
acc2 = __SMLALD(x2, y1, acc2); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc1 = __SMLALDX(x3, y1, acc1); |
|||
|
|||
a = *pScr1; |
|||
b = *(pScr1 + 1); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x1 = __PKHBT(a, b, 16); |
|||
#else |
|||
x1 = __PKHBT(b, a, 16); |
|||
#endif |
|||
|
|||
acc0 = __SMLALD(x2, y2, acc0); |
|||
|
|||
acc2 = __SMLALD(x1, y2, acc2); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#else |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLALDX(x3, y1, acc3); |
|||
|
|||
acc1 = __SMLALDX(x3, y2, acc1); |
|||
|
|||
a = *(pScr1 + 2); |
|||
b = *(pScr1 + 3); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x2 = __PKHBT(a, b, 16); |
|||
#else |
|||
x2 = __PKHBT(b, a, 16); |
|||
#endif |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLALDX(x3, y2, acc3); |
|||
|
|||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
|||
|
|||
pIn2 += 4u; |
|||
pScr1 += 4u; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
/* Update scratch pointer for remaining samples of smaller length sequence */ |
|||
pScr1 -= 4u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
tapCnt = (srcBLen) & 3u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2); |
|||
acc1 += (*pScr1++ * *pIn2); |
|||
acc2 += (*pScr1++ * *pIn2); |
|||
acc3 += (*pScr1++ * *pIn2++); |
|||
|
|||
pScr1 -= 3u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
|
|||
/* Store the results in the accumulators in the destination buffer. */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); |
|||
|
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 4u; |
|||
|
|||
} |
|||
|
|||
|
|||
blkCnt = (srcALen + srcBLen - 1u) & 0x3; |
|||
|
|||
/* Calculate convolution for remaining samples of Bigger length sequence */ |
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
|
|||
tapCnt = (srcBLen) >> 1u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
tapCnt = (srcBLen) & 1u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* The result is in 2.30 format. Convert to 1.15 with saturation. |
|||
** Then store the output in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16)); |
|||
|
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 1u; |
|||
|
|||
} |
|||
|
|||
} |
|||
|
|||
|
|||
/** |
|||
* @} end of Conv group |
|||
*/ |
@ -0,0 +1,435 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_opt_q7.c |
|||
* |
|||
* Description: Convolution of Q7 sequences. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup Conv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Convolution of Q7 sequences. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1. |
|||
* @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|||
* @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
|||
* @return none. |
|||
* |
|||
* \par Restrictions |
|||
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE |
|||
* In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit |
|||
* |
|||
* @details |
|||
* <b>Scaling and Overflow Behavior:</b> |
|||
* |
|||
* \par |
|||
* The function is implemented using a 32-bit internal accumulator. |
|||
* Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result. |
|||
* The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format. |
|||
* This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>. |
|||
* The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format. |
|||
* |
|||
*/ |
|||
|
|||
void arm_conv_opt_q7( |
|||
q7_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q7_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q7_t * pDst, |
|||
q15_t * pScratch1, |
|||
q15_t * pScratch2) |
|||
{ |
|||
|
|||
q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */ |
|||
q15_t x4; /* Temporary input variable */ |
|||
q7_t *pIn1, *pIn2; /* inputA and inputB pointer */ |
|||
uint32_t j, k, blkCnt, tapCnt; /* loop counter */ |
|||
q7_t *px; /* Temporary input1 pointer */ |
|||
q15_t *py; /* Temporary input2 pointer */ |
|||
q31_t acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
q31_t x1, x2, x3, y1; /* Temporary input variables */ |
|||
q7_t *pOut = pDst; /* output pointer */ |
|||
q7_t out0, out1, out2, out3; /* temporary variables */ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* pointer to take end of scratch2 buffer */ |
|||
pScr2 = pScratch2; |
|||
|
|||
/* points to smaller length sequence */ |
|||
px = pIn2 + srcBLen - 1; |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Initialze temporary scratch pointer */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Fill (srcBLen - 1u) zeros in scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update temporary scratch pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Copy (srcALen) samples in scratch buffer */ |
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcALen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcALen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
/* Fill (srcBLen - 1u) zeros at end of scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
#else |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = (srcBLen - 1u) >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = (srcBLen - 1u) % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
#endif |
|||
|
|||
/* Temporary pointer for scratch2 */ |
|||
py = pScratch2; |
|||
|
|||
/* Initialization of pIn2 pointer */ |
|||
pIn2 = (q7_t *) py; |
|||
|
|||
pScr2 = py; |
|||
|
|||
/* Actual convolution process starts here */ |
|||
blkCnt = (srcALen + srcBLen - 1u) >> 2; |
|||
|
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* Read two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x2 = *__SIMD32(pScr1)++; |
|||
|
|||
tapCnt = (srcBLen) >> 2u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
y1 = _SIMD32_OFFSET(pScr2); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLAD(x1, y1, acc0); |
|||
acc2 = __SMLAD(x2, y1, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
/* multiply and accumlate */ |
|||
acc1 = __SMLADX(x3, y1, acc1); |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#else |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y1, acc3); |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
y1 = _SIMD32_OFFSET(pScr2 + 2u); |
|||
|
|||
acc0 = __SMLAD(x2, y1, acc0); |
|||
|
|||
acc2 = __SMLAD(x1, y1, acc2); |
|||
|
|||
acc1 = __SMLADX(x3, y1, acc1); |
|||
|
|||
x2 = *__SIMD32(pScr1)++; |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y1, acc3); |
|||
|
|||
pScr2 += 4u; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
|
|||
|
|||
/* Update scratch pointer for remaining samples of smaller length sequence */ |
|||
pScr1 -= 4u; |
|||
|
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
tapCnt = (srcBLen) & 3u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pScr2); |
|||
acc1 += (*pScr1++ * *pScr2); |
|||
acc2 += (*pScr1++ * *pScr2); |
|||
acc3 += (*pScr1++ * *pScr2++); |
|||
|
|||
pScr1 -= 3u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
out0 = (q7_t) (__SSAT(acc0 >> 7u, 8)); |
|||
out1 = (q7_t) (__SSAT(acc1 >> 7u, 8)); |
|||
out2 = (q7_t) (__SSAT(acc2 >> 7u, 8)); |
|||
out3 = (q7_t) (__SSAT(acc3 >> 7u, 8)); |
|||
|
|||
*__SIMD32(pOut)++ = __PACKq7(out0, out1, out2, out3); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pScr2 = py; |
|||
|
|||
pScratch1 += 4u; |
|||
|
|||
} |
|||
|
|||
|
|||
blkCnt = (srcALen + srcBLen - 1u) & 0x3; |
|||
|
|||
/* Calculate convolution for remaining samples of Bigger length sequence */ |
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
|
|||
tapCnt = (srcBLen) >> 1u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
acc0 += (*pScr1++ * *pScr2++); |
|||
acc0 += (*pScr1++ * *pScr2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
tapCnt = (srcBLen) & 1u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pScr2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8)); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pScr2 = py; |
|||
|
|||
pScratch1 += 1u; |
|||
|
|||
} |
|||
|
|||
} |
|||
|
|||
|
|||
/** |
|||
* @} end of Conv group |
|||
*/ |
@ -0,0 +1,669 @@ |
|||
/* ---------------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_partial_f32.c |
|||
* |
|||
* Description: Partial convolution of floating-point sequences. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @defgroup PartialConv Partial Convolution |
|||
* |
|||
* Partial Convolution is equivalent to Convolution except that a subset of the output samples is generated. |
|||
* Each function has two additional arguments. |
|||
* <code>firstIndex</code> specifies the starting index of the subset of output samples. |
|||
* <code>numPoints</code> is the number of output samples to compute. |
|||
* The function computes the output in the range |
|||
* <code>[firstIndex, ..., firstIndex+numPoints-1]</code>. |
|||
* The output array <code>pDst</code> contains <code>numPoints</code> values. |
|||
* |
|||
* The allowable range of output indices is [0 srcALen+srcBLen-2]. |
|||
* If the requested subset does not fall in this range then the functions return ARM_MATH_ARGUMENT_ERROR. |
|||
* Otherwise the functions return ARM_MATH_SUCCESS. |
|||
* \note Refer arm_conv_f32() for details on fixed point behavior. |
|||
* |
|||
* |
|||
* <b>Fast Versions</b> |
|||
* |
|||
* \par |
|||
* Fast versions are supported for Q31 and Q15 of partial convolution. Cycles for Fast versions are less compared to Q31 and Q15 of partial conv and the design requires |
|||
* the input signals should be scaled down to avoid intermediate overflows. |
|||
* |
|||
* |
|||
* <b>Opt Versions</b> |
|||
* |
|||
* \par |
|||
* Opt versions are supported for Q15 and Q7. Design uses internal scratch buffer for getting good optimisation. |
|||
* These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions of partial convolution |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup PartialConv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Partial convolution of floating-point sequences. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. |
|||
* @param[in] firstIndex is the first output sample to start with. |
|||
* @param[in] numPoints is the number of output points to be computed. |
|||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|||
*/ |
|||
|
|||
arm_status arm_conv_partial_f32( |
|||
float32_t * pSrcA, |
|||
uint32_t srcALen, |
|||
float32_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
float32_t * pDst, |
|||
uint32_t firstIndex, |
|||
uint32_t numPoints) |
|||
{ |
|||
|
|||
|
|||
#ifndef ARM_MATH_CM0_FAMILY |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
float32_t *pIn1 = pSrcA; /* inputA pointer */ |
|||
float32_t *pIn2 = pSrcB; /* inputB pointer */ |
|||
float32_t *pOut = pDst; /* output pointer */ |
|||
float32_t *px; /* Intermediate inputA pointer */ |
|||
float32_t *py; /* Intermediate inputB pointer */ |
|||
float32_t *pSrc1, *pSrc2; /* Intermediate pointers */ |
|||
float32_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
float32_t x0, x1, x2, x3, c0; /* Temporary variables to hold state and coefficient values */ |
|||
uint32_t j, k, count = 0u, blkCnt, check; |
|||
int32_t blockSize1, blockSize2, blockSize3; /* loop counters */ |
|||
arm_status status; /* status of Partial convolution */ |
|||
|
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_MATH_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* Conditions to check which loopCounter holds |
|||
* the first and last indices of the output samples to be calculated. */ |
|||
check = firstIndex + numPoints; |
|||
blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0; |
|||
blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3; |
|||
blockSize1 = ((int32_t) srcBLen - 1) - (int32_t) firstIndex; |
|||
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 : |
|||
(int32_t) numPoints) : 0; |
|||
blockSize2 = ((int32_t) check - blockSize3) - |
|||
(blockSize1 + (int32_t) firstIndex); |
|||
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0; |
|||
|
|||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ |
|||
/* The function is internally |
|||
* divided into three stages according to the number of multiplications that has to be |
|||
* taken place between inputA samples and inputB samples. In the first stage of the |
|||
* algorithm, the multiplications increase by one for every iteration. |
|||
* In the second stage of the algorithm, srcBLen number of multiplications are done. |
|||
* In the third stage of the algorithm, the multiplications decrease by one |
|||
* for every iteration. */ |
|||
|
|||
/* Set the output pointer to point to the firstIndex |
|||
* of the output sample to be calculated. */ |
|||
pOut = pDst + firstIndex; |
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage1 |
|||
* -------------------------*/ |
|||
|
|||
/* sum = x[0] * y[0] |
|||
* sum = x[0] * y[1] + x[1] * y[0] |
|||
* .... |
|||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are increased by 1 for every iteration. |
|||
The count variable holds the number of MAC operations performed. |
|||
Since the partial convolution starts from from firstIndex |
|||
Number of Macs to be performed is firstIndex + 1 */ |
|||
count = 1u + firstIndex; |
|||
|
|||
/* Working pointer of inputA */ |
|||
px = pIn1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc1 = pIn2 + firstIndex; |
|||
py = pSrc1; |
|||
|
|||
/* ------------------------ |
|||
* Stage1 process |
|||
* ----------------------*/ |
|||
|
|||
/* The first stage starts here */ |
|||
while(blockSize1 > 0) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0.0f; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = count >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* x[0] * y[srcBLen - 1] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* x[1] * y[srcBLen - 2] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* x[2] * y[srcBLen - 3] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* x[3] * y[srcBLen - 4] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = count % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
py = ++pSrc1; |
|||
px = pIn1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize1--; |
|||
} |
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage2 |
|||
* ------------------------*/ |
|||
|
|||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] |
|||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] |
|||
* .... |
|||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] |
|||
*/ |
|||
|
|||
/* Working pointer of inputA */ |
|||
if((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) |
|||
{ |
|||
px = pIn1 + firstIndex - srcBLen + 1; |
|||
} |
|||
else |
|||
{ |
|||
px = pIn1; |
|||
} |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
py = pSrc2; |
|||
|
|||
/* count is index by which the pointer pIn1 to be incremented */ |
|||
count = 0u; |
|||
|
|||
/* ------------------- |
|||
* Stage2 process |
|||
* ------------------*/ |
|||
|
|||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. |
|||
* So, to loop unroll over blockSize2, |
|||
* srcBLen should be greater than or equal to 4 */ |
|||
if(srcBLen >= 4u) |
|||
{ |
|||
/* Loop unroll over blockSize2, by 4 */ |
|||
blkCnt = ((uint32_t) blockSize2 >> 2u); |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Set all accumulators to zero */ |
|||
acc0 = 0.0f; |
|||
acc1 = 0.0f; |
|||
acc2 = 0.0f; |
|||
acc3 = 0.0f; |
|||
|
|||
/* read x[0], x[1], x[2] samples */ |
|||
x0 = *(px++); |
|||
x1 = *(px++); |
|||
x2 = *(px++); |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
do |
|||
{ |
|||
/* Read y[srcBLen - 1] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[3] sample */ |
|||
x3 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulate */ |
|||
/* acc0 += x[0] * y[srcBLen - 1] */ |
|||
acc0 += x0 * c0; |
|||
|
|||
/* acc1 += x[1] * y[srcBLen - 1] */ |
|||
acc1 += x1 * c0; |
|||
|
|||
/* acc2 += x[2] * y[srcBLen - 1] */ |
|||
acc2 += x2 * c0; |
|||
|
|||
/* acc3 += x[3] * y[srcBLen - 1] */ |
|||
acc3 += x3 * c0; |
|||
|
|||
/* Read y[srcBLen - 2] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[4] sample */ |
|||
x0 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulate */ |
|||
/* acc0 += x[1] * y[srcBLen - 2] */ |
|||
acc0 += x1 * c0; |
|||
/* acc1 += x[2] * y[srcBLen - 2] */ |
|||
acc1 += x2 * c0; |
|||
/* acc2 += x[3] * y[srcBLen - 2] */ |
|||
acc2 += x3 * c0; |
|||
/* acc3 += x[4] * y[srcBLen - 2] */ |
|||
acc3 += x0 * c0; |
|||
|
|||
/* Read y[srcBLen - 3] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[5] sample */ |
|||
x1 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[2] * y[srcBLen - 3] */ |
|||
acc0 += x2 * c0; |
|||
/* acc1 += x[3] * y[srcBLen - 2] */ |
|||
acc1 += x3 * c0; |
|||
/* acc2 += x[4] * y[srcBLen - 2] */ |
|||
acc2 += x0 * c0; |
|||
/* acc3 += x[5] * y[srcBLen - 2] */ |
|||
acc3 += x1 * c0; |
|||
|
|||
/* Read y[srcBLen - 4] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[6] sample */ |
|||
x2 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[3] * y[srcBLen - 4] */ |
|||
acc0 += x3 * c0; |
|||
/* acc1 += x[4] * y[srcBLen - 4] */ |
|||
acc1 += x0 * c0; |
|||
/* acc2 += x[5] * y[srcBLen - 4] */ |
|||
acc2 += x1 * c0; |
|||
/* acc3 += x[6] * y[srcBLen - 4] */ |
|||
acc3 += x2 * c0; |
|||
|
|||
|
|||
} while(--k); |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Read y[srcBLen - 5] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[7] sample */ |
|||
x3 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[4] * y[srcBLen - 5] */ |
|||
acc0 += x0 * c0; |
|||
/* acc1 += x[5] * y[srcBLen - 5] */ |
|||
acc1 += x1 * c0; |
|||
/* acc2 += x[6] * y[srcBLen - 5] */ |
|||
acc2 += x2 * c0; |
|||
/* acc3 += x[7] * y[srcBLen - 5] */ |
|||
acc3 += x3 * c0; |
|||
|
|||
/* Reuse the present samples for the next MAC */ |
|||
x0 = x1; |
|||
x1 = x2; |
|||
x2 = x3; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = acc0; |
|||
*pOut++ = acc1; |
|||
*pOut++ = acc2; |
|||
*pOut++ = acc3; |
|||
|
|||
/* Increment the pointer pIn1 index, count by 1 */ |
|||
count += 4u; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = (uint32_t) blockSize2 % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0.0f; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum += *px++ * *py--; |
|||
sum += *px++ * *py--; |
|||
sum += *px++ * *py--; |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
/* If the srcBLen is not a multiple of 4, |
|||
* the blockSize2 loop cannot be unrolled by 4 */ |
|||
blkCnt = (uint32_t) blockSize2; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0.0f; |
|||
|
|||
/* srcBLen number of MACS should be performed */ |
|||
k = srcBLen; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage3 |
|||
* -------------------------*/ |
|||
|
|||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] |
|||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] |
|||
* .... |
|||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] |
|||
* sum += x[srcALen-1] * y[srcBLen-1] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are decreased by 1 for every iteration. |
|||
The count variable holds the number of MAC operations performed */ |
|||
count = srcBLen - 1u; |
|||
|
|||
/* Working pointer of inputA */ |
|||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); |
|||
px = pSrc1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
py = pSrc2; |
|||
|
|||
while(blockSize3 > 0) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0.0f; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = count >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = count % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
/* sum += x[srcALen-1] * y[srcBLen-1] */ |
|||
sum += *px++ * *py--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = ++pSrc1; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the MAC count */ |
|||
count--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize3--; |
|||
|
|||
} |
|||
|
|||
/* set status as ARM_MATH_SUCCESS */ |
|||
status = ARM_MATH_SUCCESS; |
|||
} |
|||
|
|||
/* Return to application */ |
|||
return (status); |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
float32_t *pIn1 = pSrcA; /* inputA pointer */ |
|||
float32_t *pIn2 = pSrcB; /* inputB pointer */ |
|||
float32_t sum; /* Accumulator */ |
|||
uint32_t i, j; /* loop counters */ |
|||
arm_status status; /* status of Partial convolution */ |
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
/* Loop to calculate convolution for output length number of values */ |
|||
for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++) |
|||
{ |
|||
/* Initialize sum with zero to carry on MAC operations */ |
|||
sum = 0.0f; |
|||
|
|||
/* Loop to perform MAC operations according to convolution equation */ |
|||
for (j = 0u; j <= i; j++) |
|||
{ |
|||
/* Check the array limitations for inputs */ |
|||
if((((i - j) < srcBLen) && (j < srcALen))) |
|||
{ |
|||
/* z[i] += x[i-j] * y[j] */ |
|||
sum += pIn1[j] * pIn2[i - j]; |
|||
} |
|||
} |
|||
/* Store the output in the destination buffer */ |
|||
pDst[i] = sum; |
|||
} |
|||
/* set status as ARM_SUCCESS as there are no argument errors */ |
|||
status = ARM_MATH_SUCCESS; |
|||
} |
|||
return (status); |
|||
|
|||
#endif /* #ifndef ARM_MATH_CM0_FAMILY */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of PartialConv group |
|||
*/ |
@ -0,0 +1,768 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_partial_fast_opt_q15.c |
|||
* |
|||
* Description: Fast Q15 Partial convolution. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup PartialConv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. |
|||
* @param[in] firstIndex is the first output sample to start with. |
|||
* @param[in] numPoints is the number of output points to be computed. |
|||
* @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|||
* @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
|||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|||
* |
|||
* See <code>arm_conv_partial_q15()</code> for a slower implementation of this function which uses a 64-bit accumulator to avoid wrap around distortion. |
|||
* |
|||
* \par Restrictions |
|||
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE |
|||
* In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit |
|||
* |
|||
*/ |
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
arm_status arm_conv_partial_fast_opt_q15( |
|||
q15_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q15_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q15_t * pDst, |
|||
uint32_t firstIndex, |
|||
uint32_t numPoints, |
|||
q15_t * pScratch1, |
|||
q15_t * pScratch2) |
|||
{ |
|||
|
|||
q15_t *pOut = pDst; /* output pointer */ |
|||
q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */ |
|||
q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */ |
|||
q31_t acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */ |
|||
q31_t y1, y2; /* State variables */ |
|||
q15_t *pIn1; /* inputA pointer */ |
|||
q15_t *pIn2; /* inputB pointer */ |
|||
q15_t *px; /* Intermediate inputA pointer */ |
|||
q15_t *py; /* Intermediate inputB pointer */ |
|||
uint32_t j, k, blkCnt; /* loop counter */ |
|||
arm_status status; |
|||
|
|||
uint32_t tapCnt; /* loop count */ |
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_MATH_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* Temporary pointer for scratch2 */ |
|||
py = pScratch2; |
|||
|
|||
/* pointer to take end of scratch2 buffer */ |
|||
pScr2 = pScratch2 + srcBLen - 1; |
|||
|
|||
/* points to smaller length sequence */ |
|||
px = pIn2; |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
|
|||
/* Copy smaller length input sequence in reverse order into second scratch buffer */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Initialze temporary scratch pointer */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Assuming scratch1 buffer is aligned by 32-bit */ |
|||
/* Fill (srcBLen - 1u) zeros in scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update temporary scratch pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Copy bigger length sequence(srcALen) samples in scratch1 buffer */ |
|||
|
|||
/* Copy (srcALen) samples in scratch buffer */ |
|||
arm_copy_q15(pIn1, pScr1, srcALen); |
|||
|
|||
/* Update pointers */ |
|||
pScr1 += srcALen; |
|||
|
|||
/* Fill (srcBLen - 1u) zeros at end of scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Initialization of pIn2 pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += firstIndex; |
|||
|
|||
pOut = pDst + firstIndex; |
|||
|
|||
/* First part of the processing with loop unrolling process 4 data points at a time. |
|||
** a second loop below process for the remaining 1 to 3 samples. */ |
|||
|
|||
/* Actual convolution process starts here */ |
|||
blkCnt = (numPoints) >> 2; |
|||
|
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* Read two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x2 = *__SIMD32(pScr1)++; |
|||
|
|||
tapCnt = (srcBLen) >> 2u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
y1 = _SIMD32_OFFSET(pIn2); |
|||
y2 = _SIMD32_OFFSET(pIn2 + 2u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLAD(x1, y1, acc0); |
|||
acc2 = __SMLAD(x2, y1, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
/* multiply and accumlate */ |
|||
acc1 = __SMLADX(x3, y1, acc1); |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x1 = _SIMD32_OFFSET(pScr1); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLAD(x2, y2, acc0); |
|||
|
|||
acc2 = __SMLAD(x1, y2, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#else |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y1, acc3); |
|||
acc1 = __SMLADX(x3, y2, acc1); |
|||
|
|||
x2 = _SIMD32_OFFSET(pScr1 + 2u); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y2, acc3); |
|||
|
|||
/* update scratch pointers */ |
|||
pIn2 += 4u; |
|||
pScr1 += 4u; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
/* Update scratch pointer for remaining samples of smaller length sequence */ |
|||
pScr1 -= 4u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
tapCnt = (srcBLen) & 3u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2); |
|||
acc1 += (*pScr1++ * *pIn2); |
|||
acc2 += (*pScr1++ * *pIn2); |
|||
acc3 += (*pScr1++ * *pIn2++); |
|||
|
|||
pScr1 -= 3u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
|
|||
/* Store the results in the accumulators in the destination buffer. */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); |
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); |
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 4u; |
|||
|
|||
} |
|||
|
|||
|
|||
blkCnt = numPoints & 0x3; |
|||
|
|||
/* Calculate convolution for remaining samples of Bigger length sequence */ |
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
|
|||
tapCnt = (srcBLen) >> 1u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* Read two samples from smaller buffer */ |
|||
y1 = *__SIMD32(pIn2)++; |
|||
|
|||
acc0 = __SMLAD(x1, y1, acc0); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
tapCnt = (srcBLen) & 1u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* The result is in 2.30 format. Convert to 1.15 with saturation. |
|||
** Then store the output in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16)); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 1u; |
|||
|
|||
} |
|||
/* set status as ARM_MATH_SUCCESS */ |
|||
status = ARM_MATH_SUCCESS; |
|||
} |
|||
/* Return to application */ |
|||
return (status); |
|||
} |
|||
|
|||
#else |
|||
|
|||
arm_status arm_conv_partial_fast_opt_q15( |
|||
q15_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q15_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q15_t * pDst, |
|||
uint32_t firstIndex, |
|||
uint32_t numPoints, |
|||
q15_t * pScratch1, |
|||
q15_t * pScratch2) |
|||
{ |
|||
|
|||
q15_t *pOut = pDst; /* output pointer */ |
|||
q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */ |
|||
q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */ |
|||
q31_t acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
q15_t *pIn1; /* inputA pointer */ |
|||
q15_t *pIn2; /* inputB pointer */ |
|||
q15_t *px; /* Intermediate inputA pointer */ |
|||
q15_t *py; /* Intermediate inputB pointer */ |
|||
uint32_t j, k, blkCnt; /* loop counter */ |
|||
arm_status status; /* Status variable */ |
|||
uint32_t tapCnt; /* loop count */ |
|||
q15_t x10, x11, x20, x21; /* Temporary variables to hold srcA buffer */ |
|||
q15_t y10, y11; /* Temporary variables to hold srcB buffer */ |
|||
|
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_MATH_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* Temporary pointer for scratch2 */ |
|||
py = pScratch2; |
|||
|
|||
/* pointer to take end of scratch2 buffer */ |
|||
pScr2 = pScratch2 + srcBLen - 1; |
|||
|
|||
/* points to smaller length sequence */ |
|||
px = pIn2; |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Initialze temporary scratch pointer */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Fill (srcBLen - 1u) zeros in scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update temporary scratch pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Copy bigger length sequence(srcALen) samples in scratch1 buffer */ |
|||
|
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcALen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcALen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = *pIn1++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = (srcBLen - 1u) >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = (srcBLen - 1u) % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
|
|||
/* Initialization of pIn2 pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += firstIndex; |
|||
|
|||
pOut = pDst + firstIndex; |
|||
|
|||
/* Actual convolution process starts here */ |
|||
blkCnt = (numPoints) >> 2; |
|||
|
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* Read two samples from scratch1 buffer */ |
|||
x10 = *pScr1++; |
|||
x11 = *pScr1++; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x20 = *pScr1++; |
|||
x21 = *pScr1++; |
|||
|
|||
tapCnt = (srcBLen) >> 2u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read two samples from smaller buffer */ |
|||
y10 = *pIn2; |
|||
y11 = *(pIn2 + 1u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 += (q31_t) x10 *y10; |
|||
acc0 += (q31_t) x11 *y11; |
|||
acc2 += (q31_t) x20 *y10; |
|||
acc2 += (q31_t) x21 *y11; |
|||
|
|||
/* multiply and accumlate */ |
|||
acc1 += (q31_t) x11 *y10; |
|||
acc1 += (q31_t) x20 *y11; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x10 = *pScr1; |
|||
x11 = *(pScr1 + 1u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc3 += (q31_t) x21 *y10; |
|||
acc3 += (q31_t) x10 *y11; |
|||
|
|||
/* Read next two samples from scratch2 buffer */ |
|||
y10 = *(pIn2 + 2u); |
|||
y11 = *(pIn2 + 3u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 += (q31_t) x20 *y10; |
|||
acc0 += (q31_t) x21 *y11; |
|||
acc2 += (q31_t) x10 *y10; |
|||
acc2 += (q31_t) x11 *y11; |
|||
acc1 += (q31_t) x21 *y10; |
|||
acc1 += (q31_t) x10 *y11; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x20 = *(pScr1 + 2); |
|||
x21 = *(pScr1 + 3); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc3 += (q31_t) x11 *y10; |
|||
acc3 += (q31_t) x20 *y11; |
|||
|
|||
/* update scratch pointers */ |
|||
pIn2 += 4u; |
|||
pScr1 += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
/* Update scratch pointer for remaining samples of smaller length sequence */ |
|||
pScr1 -= 4u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
tapCnt = (srcBLen) & 3u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2); |
|||
acc1 += (*pScr1++ * *pIn2); |
|||
acc2 += (*pScr1++ * *pIn2); |
|||
acc3 += (*pScr1++ * *pIn2++); |
|||
|
|||
pScr1 -= 3u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
|
|||
/* Store the results in the accumulators in the destination buffer. */ |
|||
*pOut++ = __SSAT((acc0 >> 15), 16); |
|||
*pOut++ = __SSAT((acc1 >> 15), 16); |
|||
*pOut++ = __SSAT((acc2 >> 15), 16); |
|||
*pOut++ = __SSAT((acc3 >> 15), 16); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 4u; |
|||
|
|||
} |
|||
|
|||
|
|||
blkCnt = numPoints & 0x3; |
|||
|
|||
/* Calculate convolution for remaining samples of Bigger length sequence */ |
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
|
|||
tapCnt = (srcBLen) >> 1u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x10 = *pScr1++; |
|||
x11 = *pScr1++; |
|||
|
|||
/* Read two samples from smaller buffer */ |
|||
y10 = *pIn2++; |
|||
y11 = *pIn2++; |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 += (q31_t) x10 *y10; |
|||
acc0 += (q31_t) x11 *y11; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
tapCnt = (srcBLen) & 1u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16)); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 1u; |
|||
|
|||
} |
|||
|
|||
/* set status as ARM_MATH_SUCCESS */ |
|||
status = ARM_MATH_SUCCESS; |
|||
|
|||
} |
|||
|
|||
/* Return to application */ |
|||
return (status); |
|||
} |
|||
|
|||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
|||
|
|||
/** |
|||
* @} end of PartialConv group |
|||
*/ |
1492
lib/main/STM32F1/Drivers/CMSIS/DSP_Lib/Source/FilteringFunctions/arm_conv_partial_fast_q15.c
File diff suppressed because it is too large
View File
File diff suppressed because it is too large
View File
@ -0,0 +1,611 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_partial_fast_q31.c |
|||
* |
|||
* Description: Fast Q31 Partial convolution. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup PartialConv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. |
|||
* @param[in] firstIndex is the first output sample to start with. |
|||
* @param[in] numPoints is the number of output points to be computed. |
|||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|||
* |
|||
* \par |
|||
* See <code>arm_conv_partial_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision. |
|||
*/ |
|||
|
|||
arm_status arm_conv_partial_fast_q31( |
|||
q31_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q31_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q31_t * pDst, |
|||
uint32_t firstIndex, |
|||
uint32_t numPoints) |
|||
{ |
|||
q31_t *pIn1; /* inputA pointer */ |
|||
q31_t *pIn2; /* inputB pointer */ |
|||
q31_t *pOut = pDst; /* output pointer */ |
|||
q31_t *px; /* Intermediate inputA pointer */ |
|||
q31_t *py; /* Intermediate inputB pointer */ |
|||
q31_t *pSrc1, *pSrc2; /* Intermediate pointers */ |
|||
q31_t sum, acc0, acc1, acc2, acc3; /* Accumulators */ |
|||
q31_t x0, x1, x2, x3, c0; |
|||
uint32_t j, k, count, check, blkCnt; |
|||
int32_t blockSize1, blockSize2, blockSize3; /* loop counters */ |
|||
arm_status status; /* status of Partial convolution */ |
|||
|
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_MATH_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* Conditions to check which loopCounter holds |
|||
* the first and last indices of the output samples to be calculated. */ |
|||
check = firstIndex + numPoints; |
|||
blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0; |
|||
blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3; |
|||
blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex); |
|||
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 : |
|||
(int32_t) numPoints) : 0; |
|||
blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) + |
|||
(int32_t) firstIndex); |
|||
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0; |
|||
|
|||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ |
|||
/* The function is internally |
|||
* divided into three stages according to the number of multiplications that has to be |
|||
* taken place between inputA samples and inputB samples. In the first stage of the |
|||
* algorithm, the multiplications increase by one for every iteration. |
|||
* In the second stage of the algorithm, srcBLen number of multiplications are done. |
|||
* In the third stage of the algorithm, the multiplications decrease by one |
|||
* for every iteration. */ |
|||
|
|||
/* Set the output pointer to point to the firstIndex |
|||
* of the output sample to be calculated. */ |
|||
pOut = pDst + firstIndex; |
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage1 |
|||
* -------------------------*/ |
|||
|
|||
/* sum = x[0] * y[0] |
|||
* sum = x[0] * y[1] + x[1] * y[0] |
|||
* .... |
|||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are increased by 1 for every iteration. |
|||
The count variable holds the number of MAC operations performed. |
|||
Since the partial convolution starts from firstIndex |
|||
Number of Macs to be performed is firstIndex + 1 */ |
|||
count = 1u + firstIndex; |
|||
|
|||
/* Working pointer of inputA */ |
|||
px = pIn1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + firstIndex; |
|||
py = pSrc2; |
|||
|
|||
/* ------------------------ |
|||
* Stage1 process |
|||
* ----------------------*/ |
|||
|
|||
/* The first loop starts here */ |
|||
while(blockSize1 > 0) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = count >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* x[0] * y[srcBLen - 1] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* x[1] * y[srcBLen - 2] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* x[2] * y[srcBLen - 3] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* x[3] * y[srcBLen - 4] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = count % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum << 1; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
py = ++pSrc2; |
|||
px = pIn1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize1--; |
|||
} |
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage2 |
|||
* ------------------------*/ |
|||
|
|||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] |
|||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] |
|||
* .... |
|||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] |
|||
*/ |
|||
|
|||
/* Working pointer of inputA */ |
|||
if((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) |
|||
{ |
|||
px = pIn1 + firstIndex - srcBLen + 1; |
|||
} |
|||
else |
|||
{ |
|||
px = pIn1; |
|||
} |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
py = pSrc2; |
|||
|
|||
/* count is index by which the pointer pIn1 to be incremented */ |
|||
count = 0u; |
|||
|
|||
/* ------------------- |
|||
* Stage2 process |
|||
* ------------------*/ |
|||
|
|||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. |
|||
* So, to loop unroll over blockSize2, |
|||
* srcBLen should be greater than or equal to 4 */ |
|||
if(srcBLen >= 4u) |
|||
{ |
|||
/* Loop unroll over blockSize2 */ |
|||
blkCnt = ((uint32_t) blockSize2 >> 2u); |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Set all accumulators to zero */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* read x[0], x[1], x[2] samples */ |
|||
x0 = *(px++); |
|||
x1 = *(px++); |
|||
x2 = *(px++); |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
do |
|||
{ |
|||
/* Read y[srcBLen - 1] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[3] sample */ |
|||
x3 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulate */ |
|||
/* acc0 += x[0] * y[srcBLen - 1] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
|
|||
/* acc1 += x[1] * y[srcBLen - 1] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
|
|||
/* acc2 += x[2] * y[srcBLen - 1] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
|
|||
/* acc3 += x[3] * y[srcBLen - 1] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
|
|||
/* Read y[srcBLen - 2] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[4] sample */ |
|||
x0 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulate */ |
|||
/* acc0 += x[1] * y[srcBLen - 2] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
/* acc1 += x[2] * y[srcBLen - 2] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
/* acc2 += x[3] * y[srcBLen - 2] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
/* acc3 += x[4] * y[srcBLen - 2] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
|
|||
/* Read y[srcBLen - 3] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[5] sample */ |
|||
x1 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[2] * y[srcBLen - 3] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
/* acc1 += x[3] * y[srcBLen - 2] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
/* acc2 += x[4] * y[srcBLen - 2] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
/* acc3 += x[5] * y[srcBLen - 2] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
|
|||
/* Read y[srcBLen - 4] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[6] sample */ |
|||
x2 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[3] * y[srcBLen - 4] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
/* acc1 += x[4] * y[srcBLen - 4] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
/* acc2 += x[5] * y[srcBLen - 4] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
/* acc3 += x[6] * y[srcBLen - 4] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
|
|||
|
|||
} while(--k); |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Read y[srcBLen - 5] sample */ |
|||
c0 = *(py--); |
|||
|
|||
/* Read x[7] sample */ |
|||
x3 = *(px++); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
/* acc0 += x[4] * y[srcBLen - 5] */ |
|||
acc0 = (q31_t) ((((q63_t) acc0 << 32) + ((q63_t) x0 * c0)) >> 32); |
|||
/* acc1 += x[5] * y[srcBLen - 5] */ |
|||
acc1 = (q31_t) ((((q63_t) acc1 << 32) + ((q63_t) x1 * c0)) >> 32); |
|||
/* acc2 += x[6] * y[srcBLen - 5] */ |
|||
acc2 = (q31_t) ((((q63_t) acc2 << 32) + ((q63_t) x2 * c0)) >> 32); |
|||
/* acc3 += x[7] * y[srcBLen - 5] */ |
|||
acc3 = (q31_t) ((((q63_t) acc3 << 32) + ((q63_t) x3 * c0)) >> 32); |
|||
|
|||
/* Reuse the present samples for the next MAC */ |
|||
x0 = x1; |
|||
x1 = x2; |
|||
x2 = x3; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q31_t) (acc0 << 1); |
|||
*pOut++ = (q31_t) (acc1 << 1); |
|||
*pOut++ = (q31_t) (acc2 << 1); |
|||
*pOut++ = (q31_t) (acc3 << 1); |
|||
|
|||
/* Increment the pointer pIn1 index, count by 4 */ |
|||
count += 4u; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = (uint32_t) blockSize2 % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum << 1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
/* If the srcBLen is not a multiple of 4, |
|||
* the blockSize2 loop cannot be unrolled by 4 */ |
|||
blkCnt = (uint32_t) blockSize2; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* srcBLen number of MACS should be performed */ |
|||
k = srcBLen; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum << 1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage3 |
|||
* -------------------------*/ |
|||
|
|||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] |
|||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] |
|||
* .... |
|||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] |
|||
* sum += x[srcALen-1] * y[srcBLen-1] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are decreased by 1 for every iteration. |
|||
The count variable holds the number of MAC operations performed */ |
|||
count = srcBLen - 1u; |
|||
|
|||
/* Working pointer of inputA */ |
|||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); |
|||
px = pSrc1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
py = pSrc2; |
|||
|
|||
/* ------------------- |
|||
* Stage3 process |
|||
* ------------------*/ |
|||
|
|||
while(blockSize3 > 0) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = count >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* sum += x[srcALen - srcBLen + 1] * y[srcBLen - 1] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* sum += x[srcALen - srcBLen + 2] * y[srcBLen - 2] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* sum += x[srcALen - srcBLen + 3] * y[srcBLen - 3] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* sum += x[srcALen - srcBLen + 4] * y[srcBLen - 4] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = count % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
/* sum += x[srcALen-1] * y[srcBLen-1] */ |
|||
sum = (q31_t) ((((q63_t) sum << 32) + |
|||
((q63_t) * px++ * (*py--))) >> 32); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = sum << 1; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = ++pSrc1; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the MAC count */ |
|||
count--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize3--; |
|||
|
|||
} |
|||
|
|||
/* set status as ARM_MATH_SUCCESS */ |
|||
status = ARM_MATH_SUCCESS; |
|||
} |
|||
|
|||
/* Return to application */ |
|||
return (status); |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of PartialConv group |
|||
*/ |
@ -0,0 +1,765 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_partial_opt_q15.c |
|||
* |
|||
* Description: Partial convolution of Q15 sequences. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup PartialConv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Partial convolution of Q15 sequences. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. |
|||
* @param[in] firstIndex is the first output sample to start with. |
|||
* @param[in] numPoints is the number of output points to be computed. |
|||
* @param[in] *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|||
* @param[in] *pScratch2 points to scratch buffer of size min(srcALen, srcBLen). |
|||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|||
* |
|||
* \par Restrictions |
|||
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE |
|||
* In this case input, output, state buffers should be aligned by 32-bit |
|||
* |
|||
* Refer to <code>arm_conv_partial_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4. |
|||
* |
|||
* |
|||
*/ |
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
arm_status arm_conv_partial_opt_q15( |
|||
q15_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q15_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q15_t * pDst, |
|||
uint32_t firstIndex, |
|||
uint32_t numPoints, |
|||
q15_t * pScratch1, |
|||
q15_t * pScratch2) |
|||
{ |
|||
|
|||
q15_t *pOut = pDst; /* output pointer */ |
|||
q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */ |
|||
q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */ |
|||
q63_t acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
q31_t x1, x2, x3; /* Temporary variables to hold state and coefficient values */ |
|||
q31_t y1, y2; /* State variables */ |
|||
q15_t *pIn1; /* inputA pointer */ |
|||
q15_t *pIn2; /* inputB pointer */ |
|||
q15_t *px; /* Intermediate inputA pointer */ |
|||
q15_t *py; /* Intermediate inputB pointer */ |
|||
uint32_t j, k, blkCnt; /* loop counter */ |
|||
arm_status status; /* Status variable */ |
|||
uint32_t tapCnt; /* loop count */ |
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_MATH_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* Temporary pointer for scratch2 */ |
|||
py = pScratch2; |
|||
|
|||
/* pointer to take end of scratch2 buffer */ |
|||
pScr2 = pScratch2 + srcBLen - 1; |
|||
|
|||
/* points to smaller length sequence */ |
|||
px = pIn2; |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Initialze temporary scratch pointer */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Fill (srcBLen - 1u) zeros in scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update temporary scratch pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Copy bigger length sequence(srcALen) samples in scratch1 buffer */ |
|||
|
|||
/* Copy (srcALen) samples in scratch buffer */ |
|||
arm_copy_q15(pIn1, pScr1, srcALen); |
|||
|
|||
/* Update pointers */ |
|||
pScr1 += srcALen; |
|||
|
|||
/* Fill (srcBLen - 1u) zeros at end of scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Initialization of pIn2 pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += firstIndex; |
|||
|
|||
pOut = pDst + firstIndex; |
|||
|
|||
/* Actual convolution process starts here */ |
|||
blkCnt = (numPoints) >> 2; |
|||
|
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* Read two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x2 = *__SIMD32(pScr1)++; |
|||
|
|||
tapCnt = (srcBLen) >> 2u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
y1 = _SIMD32_OFFSET(pIn2); |
|||
y2 = _SIMD32_OFFSET(pIn2 + 2u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLALD(x1, y1, acc0); |
|||
acc2 = __SMLALD(x2, y1, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
/* multiply and accumlate */ |
|||
acc1 = __SMLALDX(x3, y1, acc1); |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x1 = _SIMD32_OFFSET(pScr1); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLALD(x2, y2, acc0); |
|||
acc2 = __SMLALD(x1, y2, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#else |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLALDX(x3, y1, acc3); |
|||
acc1 = __SMLALDX(x3, y2, acc1); |
|||
|
|||
x2 = _SIMD32_OFFSET(pScr1 + 2u); |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLALDX(x3, y2, acc3); |
|||
|
|||
/* update scratch pointers */ |
|||
pIn2 += 4u; |
|||
pScr1 += 4u; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
/* Update scratch pointer for remaining samples of smaller length sequence */ |
|||
pScr1 -= 4u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
tapCnt = (srcBLen) & 3u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2); |
|||
acc1 += (*pScr1++ * *pIn2); |
|||
acc2 += (*pScr1++ * *pIn2); |
|||
acc3 += (*pScr1++ * *pIn2++); |
|||
|
|||
pScr1 -= 3u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
|
|||
/* Store the results in the accumulators in the destination buffer. */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); |
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); |
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 4u; |
|||
|
|||
} |
|||
|
|||
|
|||
blkCnt = numPoints & 0x3; |
|||
|
|||
/* Calculate convolution for remaining samples of Bigger length sequence */ |
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
|
|||
tapCnt = (srcBLen) >> 1u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* Read two samples from smaller buffer */ |
|||
y1 = *__SIMD32(pIn2)++; |
|||
|
|||
acc0 = __SMLALD(x1, y1, acc0); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
tapCnt = (srcBLen) & 1u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16)); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 1u; |
|||
|
|||
} |
|||
|
|||
/* set status as ARM_MATH_SUCCESS */ |
|||
status = ARM_MATH_SUCCESS; |
|||
|
|||
} |
|||
|
|||
/* Return to application */ |
|||
return (status); |
|||
} |
|||
|
|||
#else |
|||
|
|||
arm_status arm_conv_partial_opt_q15( |
|||
q15_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q15_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q15_t * pDst, |
|||
uint32_t firstIndex, |
|||
uint32_t numPoints, |
|||
q15_t * pScratch1, |
|||
q15_t * pScratch2) |
|||
{ |
|||
|
|||
q15_t *pOut = pDst; /* output pointer */ |
|||
q15_t *pScr1 = pScratch1; /* Temporary pointer for scratch1 */ |
|||
q15_t *pScr2 = pScratch2; /* Temporary pointer for scratch1 */ |
|||
q63_t acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
q15_t *pIn1; /* inputA pointer */ |
|||
q15_t *pIn2; /* inputB pointer */ |
|||
q15_t *px; /* Intermediate inputA pointer */ |
|||
q15_t *py; /* Intermediate inputB pointer */ |
|||
uint32_t j, k, blkCnt; /* loop counter */ |
|||
arm_status status; /* Status variable */ |
|||
uint32_t tapCnt; /* loop count */ |
|||
q15_t x10, x11, x20, x21; /* Temporary variables to hold srcA buffer */ |
|||
q15_t y10, y11; /* Temporary variables to hold srcB buffer */ |
|||
|
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_MATH_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* Temporary pointer for scratch2 */ |
|||
py = pScratch2; |
|||
|
|||
/* pointer to take end of scratch2 buffer */ |
|||
pScr2 = pScratch2 + srcBLen - 1; |
|||
|
|||
/* points to smaller length sequence */ |
|||
px = pIn2; |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr2-- = *px++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Initialze temporary scratch pointer */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Fill (srcBLen - 1u) zeros in scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update temporary scratch pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Copy bigger length sequence(srcALen) samples in scratch1 buffer */ |
|||
|
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcALen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
*pScr1++ = *pIn1++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcALen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = *pIn1++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = (srcBLen - 1u) >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = (srcBLen - 1u) % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
|
|||
/* Initialization of pIn2 pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += firstIndex; |
|||
|
|||
pOut = pDst + firstIndex; |
|||
|
|||
/* Actual convolution process starts here */ |
|||
blkCnt = (numPoints) >> 2; |
|||
|
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* Read two samples from scratch1 buffer */ |
|||
x10 = *pScr1++; |
|||
x11 = *pScr1++; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x20 = *pScr1++; |
|||
x21 = *pScr1++; |
|||
|
|||
tapCnt = (srcBLen) >> 2u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read two samples from smaller buffer */ |
|||
y10 = *pIn2; |
|||
y11 = *(pIn2 + 1u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 += (q63_t) x10 *y10; |
|||
acc0 += (q63_t) x11 *y11; |
|||
acc2 += (q63_t) x20 *y10; |
|||
acc2 += (q63_t) x21 *y11; |
|||
|
|||
/* multiply and accumlate */ |
|||
acc1 += (q63_t) x11 *y10; |
|||
acc1 += (q63_t) x20 *y11; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x10 = *pScr1; |
|||
x11 = *(pScr1 + 1u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc3 += (q63_t) x21 *y10; |
|||
acc3 += (q63_t) x10 *y11; |
|||
|
|||
/* Read next two samples from scratch2 buffer */ |
|||
y10 = *(pIn2 + 2u); |
|||
y11 = *(pIn2 + 3u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 += (q63_t) x20 *y10; |
|||
acc0 += (q63_t) x21 *y11; |
|||
acc2 += (q63_t) x10 *y10; |
|||
acc2 += (q63_t) x11 *y11; |
|||
acc1 += (q63_t) x21 *y10; |
|||
acc1 += (q63_t) x10 *y11; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x20 = *(pScr1 + 2); |
|||
x21 = *(pScr1 + 3); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc3 += (q63_t) x11 *y10; |
|||
acc3 += (q63_t) x20 *y11; |
|||
|
|||
/* update scratch pointers */ |
|||
pIn2 += 4u; |
|||
pScr1 += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
/* Update scratch pointer for remaining samples of smaller length sequence */ |
|||
pScr1 -= 4u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
tapCnt = (srcBLen) & 3u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2); |
|||
acc1 += (*pScr1++ * *pIn2); |
|||
acc2 += (*pScr1++ * *pIn2); |
|||
acc3 += (*pScr1++ * *pIn2++); |
|||
|
|||
pScr1 -= 3u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
|
|||
/* Store the results in the accumulators in the destination buffer. */ |
|||
*pOut++ = __SSAT((acc0 >> 15), 16); |
|||
*pOut++ = __SSAT((acc1 >> 15), 16); |
|||
*pOut++ = __SSAT((acc2 >> 15), 16); |
|||
*pOut++ = __SSAT((acc3 >> 15), 16); |
|||
|
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 4u; |
|||
|
|||
} |
|||
|
|||
|
|||
blkCnt = numPoints & 0x3; |
|||
|
|||
/* Calculate convolution for remaining samples of Bigger length sequence */ |
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
|
|||
tapCnt = (srcBLen) >> 1u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x10 = *pScr1++; |
|||
x11 = *pScr1++; |
|||
|
|||
/* Read two samples from smaller buffer */ |
|||
y10 = *pIn2++; |
|||
y11 = *pIn2++; |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 += (q63_t) x10 *y10; |
|||
acc0 += (q63_t) x11 *y11; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
tapCnt = (srcBLen) & 1u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pIn2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16)); |
|||
|
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = py; |
|||
|
|||
pScratch1 += 1u; |
|||
|
|||
} |
|||
|
|||
/* set status as ARM_MATH_SUCCESS */ |
|||
status = ARM_MATH_SUCCESS; |
|||
|
|||
} |
|||
|
|||
/* Return to application */ |
|||
return (status); |
|||
} |
|||
|
|||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
|||
|
|||
|
|||
/** |
|||
* @} end of PartialConv group |
|||
*/ |
@ -0,0 +1,803 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_partial_opt_q7.c |
|||
* |
|||
* Description: Partial convolution of Q7 sequences. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup PartialConv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Partial convolution of Q7 sequences. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. |
|||
* @param[in] firstIndex is the first output sample to start with. |
|||
* @param[in] numPoints is the number of output points to be computed. |
|||
* @param[in] *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2. |
|||
* @param[in] *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen). |
|||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|||
* |
|||
* \par Restrictions |
|||
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE |
|||
* In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit |
|||
* |
|||
* |
|||
* |
|||
*/ |
|||
|
|||
|
|||
#ifndef UNALIGNED_SUPPORT_DISABLE |
|||
|
|||
arm_status arm_conv_partial_opt_q7( |
|||
q7_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q7_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q7_t * pDst, |
|||
uint32_t firstIndex, |
|||
uint32_t numPoints, |
|||
q15_t * pScratch1, |
|||
q15_t * pScratch2) |
|||
{ |
|||
|
|||
q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */ |
|||
q15_t x4; /* Temporary input variable */ |
|||
q7_t *pIn1, *pIn2; /* inputA and inputB pointer */ |
|||
uint32_t j, k, blkCnt, tapCnt; /* loop counter */ |
|||
q7_t *px; /* Temporary input1 pointer */ |
|||
q15_t *py; /* Temporary input2 pointer */ |
|||
q31_t acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
q31_t x1, x2, x3, y1; /* Temporary input variables */ |
|||
arm_status status; |
|||
q7_t *pOut = pDst; /* output pointer */ |
|||
q7_t out0, out1, out2, out3; /* temporary variables */ |
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_MATH_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* pointer to take end of scratch2 buffer */ |
|||
pScr2 = pScratch2; |
|||
|
|||
/* points to smaller length sequence */ |
|||
px = pIn2 + srcBLen - 1; |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Initialze temporary scratch pointer */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Fill (srcBLen - 1u) zeros in scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update temporary scratch pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Copy (srcALen) samples in scratch buffer */ |
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcALen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcALen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Fill (srcBLen - 1u) zeros at end of scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
|
|||
/* Temporary pointer for scratch2 */ |
|||
py = pScratch2; |
|||
|
|||
/* Initialization of pIn2 pointer */ |
|||
pIn2 = (q7_t *) py; |
|||
|
|||
pScr2 = py; |
|||
|
|||
pOut = pDst + firstIndex; |
|||
|
|||
pScratch1 += firstIndex; |
|||
|
|||
/* Actual convolution process starts here */ |
|||
blkCnt = (numPoints) >> 2; |
|||
|
|||
|
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* Read two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x2 = *__SIMD32(pScr1)++; |
|||
|
|||
tapCnt = (srcBLen) >> 2u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
y1 = _SIMD32_OFFSET(pScr2); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 = __SMLAD(x1, y1, acc0); |
|||
acc2 = __SMLAD(x2, y1, acc2); |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
/* multiply and accumlate */ |
|||
acc1 = __SMLADX(x3, y1, acc1); |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* pack input data */ |
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#else |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y1, acc3); |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
y1 = _SIMD32_OFFSET(pScr2 + 2u); |
|||
|
|||
acc0 = __SMLAD(x2, y1, acc0); |
|||
|
|||
acc2 = __SMLAD(x1, y1, acc2); |
|||
|
|||
acc1 = __SMLADX(x3, y1, acc1); |
|||
|
|||
x2 = *__SIMD32(pScr1)++; |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
x3 = __PKHBT(x2, x1, 0); |
|||
#else |
|||
x3 = __PKHBT(x1, x2, 0); |
|||
#endif |
|||
|
|||
acc3 = __SMLADX(x3, y1, acc3); |
|||
|
|||
pScr2 += 4u; |
|||
|
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
|
|||
|
|||
/* Update scratch pointer for remaining samples of smaller length sequence */ |
|||
pScr1 -= 4u; |
|||
|
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
tapCnt = (srcBLen) & 3u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pScr2); |
|||
acc1 += (*pScr1++ * *pScr2); |
|||
acc2 += (*pScr1++ * *pScr2); |
|||
acc3 += (*pScr1++ * *pScr2++); |
|||
|
|||
pScr1 -= 3u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
out0 = (q7_t) (__SSAT(acc0 >> 7u, 8)); |
|||
out1 = (q7_t) (__SSAT(acc1 >> 7u, 8)); |
|||
out2 = (q7_t) (__SSAT(acc2 >> 7u, 8)); |
|||
out3 = (q7_t) (__SSAT(acc3 >> 7u, 8)); |
|||
|
|||
*__SIMD32(pOut)++ = __PACKq7(out0, out1, out2, out3); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pScr2 = py; |
|||
|
|||
pScratch1 += 4u; |
|||
|
|||
} |
|||
|
|||
blkCnt = (numPoints) & 0x3; |
|||
|
|||
/* Calculate convolution for remaining samples of Bigger length sequence */ |
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
|
|||
tapCnt = (srcBLen) >> 1u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x1 = *__SIMD32(pScr1)++; |
|||
|
|||
/* Read two samples from smaller buffer */ |
|||
y1 = *__SIMD32(pScr2)++; |
|||
|
|||
acc0 = __SMLAD(x1, y1, acc0); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
tapCnt = (srcBLen) & 1u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pScr2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8)); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pScr2 = py; |
|||
|
|||
pScratch1 += 1u; |
|||
|
|||
} |
|||
|
|||
/* set status as ARM_MATH_SUCCESS */ |
|||
status = ARM_MATH_SUCCESS; |
|||
|
|||
|
|||
} |
|||
|
|||
return (status); |
|||
|
|||
} |
|||
|
|||
#else |
|||
|
|||
arm_status arm_conv_partial_opt_q7( |
|||
q7_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q7_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q7_t * pDst, |
|||
uint32_t firstIndex, |
|||
uint32_t numPoints, |
|||
q15_t * pScratch1, |
|||
q15_t * pScratch2) |
|||
{ |
|||
|
|||
q15_t *pScr2, *pScr1; /* Intermediate pointers for scratch pointers */ |
|||
q15_t x4; /* Temporary input variable */ |
|||
q7_t *pIn1, *pIn2; /* inputA and inputB pointer */ |
|||
uint32_t j, k, blkCnt, tapCnt; /* loop counter */ |
|||
q7_t *px; /* Temporary input1 pointer */ |
|||
q15_t *py; /* Temporary input2 pointer */ |
|||
q31_t acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
arm_status status; |
|||
q7_t *pOut = pDst; /* output pointer */ |
|||
q15_t x10, x11, x20, x21; /* Temporary input variables */ |
|||
q15_t y10, y11; /* Temporary input variables */ |
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_MATH_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* pointer to take end of scratch2 buffer */ |
|||
pScr2 = pScratch2; |
|||
|
|||
/* points to smaller length sequence */ |
|||
px = pIn2 + srcBLen - 1; |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
x4 = (q15_t) * px--; |
|||
*pScr2++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Initialze temporary scratch pointer */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Fill (srcBLen - 1u) zeros in scratch buffer */ |
|||
arm_fill_q15(0, pScr1, (srcBLen - 1u)); |
|||
|
|||
/* Update temporary scratch pointer */ |
|||
pScr1 += (srcBLen - 1u); |
|||
|
|||
/* Copy (srcALen) samples in scratch buffer */ |
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = srcALen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = srcALen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
x4 = (q15_t) * pIn1++; |
|||
*pScr1++ = x4; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Apply loop unrolling and do 4 Copies simultaneously. */ |
|||
k = (srcBLen - 1u) >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling copies 4 data points at a time. |
|||
** a second loop below copies for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner */ |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the count is not a multiple of 4, copy remaining samples here. |
|||
** No loop unrolling is used. */ |
|||
k = (srcBLen - 1u) % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* copy second buffer in reversal manner for remaining samples */ |
|||
*pScr1++ = 0; |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
|
|||
/* Temporary pointer for scratch2 */ |
|||
py = pScratch2; |
|||
|
|||
/* Initialization of pIn2 pointer */ |
|||
pIn2 = (q7_t *) py; |
|||
|
|||
pScr2 = py; |
|||
|
|||
pOut = pDst + firstIndex; |
|||
|
|||
pScratch1 += firstIndex; |
|||
|
|||
/* Actual convolution process starts here */ |
|||
blkCnt = (numPoints) >> 2; |
|||
|
|||
|
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
/* Read two samples from scratch1 buffer */ |
|||
x10 = *pScr1++; |
|||
x11 = *pScr1++; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x20 = *pScr1++; |
|||
x21 = *pScr1++; |
|||
|
|||
tapCnt = (srcBLen) >> 2u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read four samples from smaller buffer */ |
|||
y10 = *pScr2; |
|||
y11 = *(pScr2 + 1u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 += (q31_t) x10 *y10; |
|||
acc0 += (q31_t) x11 *y11; |
|||
acc2 += (q31_t) x20 *y10; |
|||
acc2 += (q31_t) x21 *y11; |
|||
|
|||
|
|||
acc1 += (q31_t) x11 *y10; |
|||
acc1 += (q31_t) x20 *y11; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x10 = *pScr1; |
|||
x11 = *(pScr1 + 1u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc3 += (q31_t) x21 *y10; |
|||
acc3 += (q31_t) x10 *y11; |
|||
|
|||
/* Read next two samples from scratch2 buffer */ |
|||
y10 = *(pScr2 + 2u); |
|||
y11 = *(pScr2 + 3u); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 += (q31_t) x20 *y10; |
|||
acc0 += (q31_t) x21 *y11; |
|||
acc2 += (q31_t) x10 *y10; |
|||
acc2 += (q31_t) x11 *y11; |
|||
acc1 += (q31_t) x21 *y10; |
|||
acc1 += (q31_t) x10 *y11; |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x20 = *(pScr1 + 2); |
|||
x21 = *(pScr1 + 3); |
|||
|
|||
/* multiply and accumlate */ |
|||
acc3 += (q31_t) x11 *y10; |
|||
acc3 += (q31_t) x20 *y11; |
|||
|
|||
/* update scratch pointers */ |
|||
|
|||
pScr1 += 4u; |
|||
pScr2 += 4u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
|
|||
|
|||
/* Update scratch pointer for remaining samples of smaller length sequence */ |
|||
pScr1 -= 4u; |
|||
|
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
tapCnt = (srcBLen) & 3u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pScr2); |
|||
acc1 += (*pScr1++ * *pScr2); |
|||
acc2 += (*pScr1++ * *pScr2); |
|||
acc3 += (*pScr1++ * *pScr2++); |
|||
|
|||
pScr1 -= 3u; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8)); |
|||
*pOut++ = (q7_t) (__SSAT(acc1 >> 7u, 8)); |
|||
*pOut++ = (q7_t) (__SSAT(acc2 >> 7u, 8)); |
|||
*pOut++ = (q7_t) (__SSAT(acc3 >> 7u, 8)); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pScr2 = py; |
|||
|
|||
pScratch1 += 4u; |
|||
|
|||
} |
|||
|
|||
blkCnt = (numPoints) & 0x3; |
|||
|
|||
/* Calculate convolution for remaining samples of Bigger length sequence */ |
|||
while(blkCnt > 0) |
|||
{ |
|||
/* Initialze temporary scratch pointer as scratch1 */ |
|||
pScr1 = pScratch1; |
|||
|
|||
/* Clear Accumlators */ |
|||
acc0 = 0; |
|||
|
|||
tapCnt = (srcBLen) >> 1u; |
|||
|
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* Read next two samples from scratch1 buffer */ |
|||
x10 = *pScr1++; |
|||
x11 = *pScr1++; |
|||
|
|||
/* Read two samples from smaller buffer */ |
|||
y10 = *pScr2++; |
|||
y11 = *pScr2++; |
|||
|
|||
/* multiply and accumlate */ |
|||
acc0 += (q31_t) x10 *y10; |
|||
acc0 += (q31_t) x11 *y11; |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
tapCnt = (srcBLen) & 1u; |
|||
|
|||
/* apply same above for remaining samples of smaller length sequence */ |
|||
while(tapCnt > 0u) |
|||
{ |
|||
|
|||
/* accumlate the results */ |
|||
acc0 += (*pScr1++ * *pScr2++); |
|||
|
|||
/* Decrement the loop counter */ |
|||
tapCnt--; |
|||
} |
|||
|
|||
blkCnt--; |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8)); |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pScr2 = py; |
|||
|
|||
pScratch1 += 1u; |
|||
|
|||
} |
|||
|
|||
/* set status as ARM_MATH_SUCCESS */ |
|||
status = ARM_MATH_SUCCESS; |
|||
|
|||
} |
|||
|
|||
return (status); |
|||
|
|||
} |
|||
|
|||
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */ |
|||
|
|||
|
|||
|
|||
/** |
|||
* @} end of PartialConv group |
|||
*/ |
@ -0,0 +1,786 @@ |
|||
/* ---------------------------------------------------------------------- |
|||
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|||
* |
|||
* $Date: 19. March 2015 |
|||
* $Revision: V.1.4.5 |
|||
* |
|||
* Project: CMSIS DSP Library |
|||
* Title: arm_conv_partial_q15.c |
|||
* |
|||
* Description: Partial convolution of Q15 sequences. |
|||
* |
|||
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|||
* |
|||
* Redistribution and use in source and binary forms, with or without |
|||
* modification, are permitted provided that the following conditions |
|||
* are met: |
|||
* - Redistributions of source code must retain the above copyright |
|||
* notice, this list of conditions and the following disclaimer. |
|||
* - Redistributions in binary form must reproduce the above copyright |
|||
* notice, this list of conditions and the following disclaimer in |
|||
* the documentation and/or other materials provided with the |
|||
* distribution. |
|||
* - Neither the name of ARM LIMITED nor the names of its contributors |
|||
* may be used to endorse or promote products derived from this |
|||
* software without specific prior written permission. |
|||
* |
|||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|||
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|||
* POSSIBILITY OF SUCH DAMAGE. |
|||
* -------------------------------------------------------------------- */ |
|||
|
|||
#include "arm_math.h" |
|||
|
|||
/** |
|||
* @ingroup groupFilters |
|||
*/ |
|||
|
|||
/** |
|||
* @addtogroup PartialConv |
|||
* @{ |
|||
*/ |
|||
|
|||
/** |
|||
* @brief Partial convolution of Q15 sequences. |
|||
* @param[in] *pSrcA points to the first input sequence. |
|||
* @param[in] srcALen length of the first input sequence. |
|||
* @param[in] *pSrcB points to the second input sequence. |
|||
* @param[in] srcBLen length of the second input sequence. |
|||
* @param[out] *pDst points to the location where the output result is written. |
|||
* @param[in] firstIndex is the first output sample to start with. |
|||
* @param[in] numPoints is the number of output points to be computed. |
|||
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2]. |
|||
* |
|||
* Refer to <code>arm_conv_partial_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4. |
|||
* |
|||
* \par |
|||
* Refer the function <code>arm_conv_partial_opt_q15()</code> for a faster implementation of this function using scratch buffers. |
|||
* |
|||
*/ |
|||
|
|||
|
|||
arm_status arm_conv_partial_q15( |
|||
q15_t * pSrcA, |
|||
uint32_t srcALen, |
|||
q15_t * pSrcB, |
|||
uint32_t srcBLen, |
|||
q15_t * pDst, |
|||
uint32_t firstIndex, |
|||
uint32_t numPoints) |
|||
{ |
|||
|
|||
#if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE) |
|||
|
|||
/* Run the below code for Cortex-M4 and Cortex-M3 */ |
|||
|
|||
q15_t *pIn1; /* inputA pointer */ |
|||
q15_t *pIn2; /* inputB pointer */ |
|||
q15_t *pOut = pDst; /* output pointer */ |
|||
q63_t sum, acc0, acc1, acc2, acc3; /* Accumulator */ |
|||
q15_t *px; /* Intermediate inputA pointer */ |
|||
q15_t *py; /* Intermediate inputB pointer */ |
|||
q15_t *pSrc1, *pSrc2; /* Intermediate pointers */ |
|||
q31_t x0, x1, x2, x3, c0; /* Temporary input variables */ |
|||
uint32_t j, k, count, check, blkCnt; |
|||
int32_t blockSize1, blockSize2, blockSize3; /* loop counter */ |
|||
arm_status status; /* status of Partial convolution */ |
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_MATH_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
|
|||
/* The algorithm implementation is based on the lengths of the inputs. */ |
|||
/* srcB is always made to slide across srcA. */ |
|||
/* So srcBLen is always considered as shorter or equal to srcALen */ |
|||
if(srcALen >= srcBLen) |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcA; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcB; |
|||
} |
|||
else |
|||
{ |
|||
/* Initialization of inputA pointer */ |
|||
pIn1 = pSrcB; |
|||
|
|||
/* Initialization of inputB pointer */ |
|||
pIn2 = pSrcA; |
|||
|
|||
/* srcBLen is always considered as shorter or equal to srcALen */ |
|||
j = srcBLen; |
|||
srcBLen = srcALen; |
|||
srcALen = j; |
|||
} |
|||
|
|||
/* Conditions to check which loopCounter holds |
|||
* the first and last indices of the output samples to be calculated. */ |
|||
check = firstIndex + numPoints; |
|||
blockSize3 = ((int32_t)check > (int32_t)srcALen) ? (int32_t)check - (int32_t)srcALen : 0; |
|||
blockSize3 = ((int32_t)firstIndex > (int32_t)srcALen - 1) ? blockSize3 - (int32_t)firstIndex + (int32_t)srcALen : blockSize3; |
|||
blockSize1 = (((int32_t) srcBLen - 1) - (int32_t) firstIndex); |
|||
blockSize1 = (blockSize1 > 0) ? ((check > (srcBLen - 1u)) ? blockSize1 : |
|||
(int32_t) numPoints) : 0; |
|||
blockSize2 = (int32_t) check - ((blockSize3 + blockSize1) + |
|||
(int32_t) firstIndex); |
|||
blockSize2 = (blockSize2 > 0) ? blockSize2 : 0; |
|||
|
|||
/* conv(x,y) at n = x[n] * y[0] + x[n-1] * y[1] + x[n-2] * y[2] + ...+ x[n-N+1] * y[N -1] */ |
|||
/* The function is internally |
|||
* divided into three stages according to the number of multiplications that has to be |
|||
* taken place between inputA samples and inputB samples. In the first stage of the |
|||
* algorithm, the multiplications increase by one for every iteration. |
|||
* In the second stage of the algorithm, srcBLen number of multiplications are done. |
|||
* In the third stage of the algorithm, the multiplications decrease by one |
|||
* for every iteration. */ |
|||
|
|||
/* Set the output pointer to point to the firstIndex |
|||
* of the output sample to be calculated. */ |
|||
pOut = pDst + firstIndex; |
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage1 |
|||
* -------------------------*/ |
|||
|
|||
/* sum = x[0] * y[0] |
|||
* sum = x[0] * y[1] + x[1] * y[0] |
|||
* .... |
|||
* sum = x[0] * y[srcBlen - 1] + x[1] * y[srcBlen - 2] +...+ x[srcBLen - 1] * y[0] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are increased by 1 for every iteration. |
|||
The count variable holds the number of MAC operations performed. |
|||
Since the partial convolution starts from firstIndex |
|||
Number of Macs to be performed is firstIndex + 1 */ |
|||
count = 1u + firstIndex; |
|||
|
|||
/* Working pointer of inputA */ |
|||
px = pIn1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + firstIndex; |
|||
py = pSrc2; |
|||
|
|||
/* ------------------------ |
|||
* Stage1 process |
|||
* ----------------------*/ |
|||
|
|||
/* For loop unrolling by 4, this stage is divided into two. */ |
|||
/* First part of this stage computes the MAC operations less than 4 */ |
|||
/* Second part of this stage computes the MAC operations greater than or equal to 4 */ |
|||
|
|||
/* The first part of the stage starts here */ |
|||
while((count < 4u) && (blockSize1 > 0)) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Loop over number of MAC operations between |
|||
* inputA samples and inputB samples */ |
|||
k = count; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum = __SMLALD(*px++, *py--, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16)); |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
py = ++pSrc2; |
|||
px = pIn1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize1--; |
|||
} |
|||
|
|||
/* The second part of the stage starts here */ |
|||
/* The internal loop, over count, is unrolled by 4 */ |
|||
/* To, read the last two inputB samples using SIMD: |
|||
* y[srcBLen] and y[srcBLen-1] coefficients, py is decremented by 1 */ |
|||
py = py - 1; |
|||
|
|||
while(blockSize1 > 0) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = count >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
/* x[0], x[1] are multiplied with y[srcBLen - 1], y[srcBLen - 2] respectively */ |
|||
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum); |
|||
/* x[2], x[3] are multiplied with y[srcBLen - 3], y[srcBLen - 4] respectively */ |
|||
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* For the next MAC operations, the pointer py is used without SIMD |
|||
* So, py is incremented by 1 */ |
|||
py = py + 1u; |
|||
|
|||
/* If the count is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = count % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum = __SMLALD(*px++, *py--, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16)); |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
py = ++pSrc2 - 1u; |
|||
px = pIn1; |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize1--; |
|||
} |
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage2 |
|||
* ------------------------*/ |
|||
|
|||
/* sum = x[0] * y[srcBLen-1] + x[1] * y[srcBLen-2] +...+ x[srcBLen-1] * y[0] |
|||
* sum = x[1] * y[srcBLen-1] + x[2] * y[srcBLen-2] +...+ x[srcBLen] * y[0] |
|||
* .... |
|||
* sum = x[srcALen-srcBLen-2] * y[srcBLen-1] + x[srcALen] * y[srcBLen-2] +...+ x[srcALen-1] * y[0] |
|||
*/ |
|||
|
|||
/* Working pointer of inputA */ |
|||
if((int32_t)firstIndex - (int32_t)srcBLen + 1 > 0) |
|||
{ |
|||
px = pIn1 + firstIndex - srcBLen + 1; |
|||
} |
|||
else |
|||
{ |
|||
px = pIn1; |
|||
} |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
py = pSrc2; |
|||
|
|||
/* count is the index by which the pointer pIn1 to be incremented */ |
|||
count = 0u; |
|||
|
|||
|
|||
/* -------------------- |
|||
* Stage2 process |
|||
* -------------------*/ |
|||
|
|||
/* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. |
|||
* So, to loop unroll over blockSize2, |
|||
* srcBLen should be greater than or equal to 4 */ |
|||
if(srcBLen >= 4u) |
|||
{ |
|||
/* Loop unroll over blockSize2, by 4 */ |
|||
blkCnt = blockSize2 >> 2u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
py = py - 1u; |
|||
|
|||
/* Set all accumulators to zero */ |
|||
acc0 = 0; |
|||
acc1 = 0; |
|||
acc2 = 0; |
|||
acc3 = 0; |
|||
|
|||
|
|||
/* read x[0], x[1] samples */ |
|||
x0 = *__SIMD32(px); |
|||
/* read x[1], x[2] samples */ |
|||
x1 = _SIMD32_OFFSET(px+1); |
|||
px+= 2u; |
|||
|
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
do |
|||
{ |
|||
/* Read the last two inputB samples using SIMD: |
|||
* y[srcBLen - 1] and y[srcBLen - 2] */ |
|||
c0 = *__SIMD32(py)--; |
|||
|
|||
/* acc0 += x[0] * y[srcBLen - 1] + x[1] * y[srcBLen - 2] */ |
|||
acc0 = __SMLALDX(x0, c0, acc0); |
|||
|
|||
/* acc1 += x[1] * y[srcBLen - 1] + x[2] * y[srcBLen - 2] */ |
|||
acc1 = __SMLALDX(x1, c0, acc1); |
|||
|
|||
/* Read x[2], x[3] */ |
|||
x2 = *__SIMD32(px); |
|||
|
|||
/* Read x[3], x[4] */ |
|||
x3 = _SIMD32_OFFSET(px+1); |
|||
|
|||
/* acc2 += x[2] * y[srcBLen - 1] + x[3] * y[srcBLen - 2] */ |
|||
acc2 = __SMLALDX(x2, c0, acc2); |
|||
|
|||
/* acc3 += x[3] * y[srcBLen - 1] + x[4] * y[srcBLen - 2] */ |
|||
acc3 = __SMLALDX(x3, c0, acc3); |
|||
|
|||
/* Read y[srcBLen - 3] and y[srcBLen - 4] */ |
|||
c0 = *__SIMD32(py)--; |
|||
|
|||
/* acc0 += x[2] * y[srcBLen - 3] + x[3] * y[srcBLen - 4] */ |
|||
acc0 = __SMLALDX(x2, c0, acc0); |
|||
|
|||
/* acc1 += x[3] * y[srcBLen - 3] + x[4] * y[srcBLen - 4] */ |
|||
acc1 = __SMLALDX(x3, c0, acc1); |
|||
|
|||
/* Read x[4], x[5] */ |
|||
x0 = _SIMD32_OFFSET(px+2); |
|||
|
|||
/* Read x[5], x[6] */ |
|||
x1 = _SIMD32_OFFSET(px+3); |
|||
px += 4u; |
|||
|
|||
/* acc2 += x[4] * y[srcBLen - 3] + x[5] * y[srcBLen - 4] */ |
|||
acc2 = __SMLALDX(x0, c0, acc2); |
|||
|
|||
/* acc3 += x[5] * y[srcBLen - 3] + x[6] * y[srcBLen - 4] */ |
|||
acc3 = __SMLALDX(x1, c0, acc3); |
|||
|
|||
} while(--k); |
|||
|
|||
/* For the next MAC operations, SIMD is not used |
|||
* So, the 16 bit pointer if inputB, py is updated */ |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
if(k == 1u) |
|||
{ |
|||
/* Read y[srcBLen - 5] */ |
|||
c0 = *(py+1); |
|||
|
|||
#ifdef ARM_MATH_BIG_ENDIAN |
|||
|
|||
c0 = c0 << 16u; |
|||
|
|||
#else |
|||
|
|||
c0 = c0 & 0x0000FFFF; |
|||
|
|||
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Read x[7] */ |
|||
x3 = *__SIMD32(px); |
|||
px++; |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
acc0 = __SMLALD(x0, c0, acc0); |
|||
acc1 = __SMLALD(x1, c0, acc1); |
|||
acc2 = __SMLALDX(x1, c0, acc2); |
|||
acc3 = __SMLALDX(x3, c0, acc3); |
|||
} |
|||
|
|||
if(k == 2u) |
|||
{ |
|||
/* Read y[srcBLen - 5], y[srcBLen - 6] */ |
|||
c0 = _SIMD32_OFFSET(py); |
|||
|
|||
/* Read x[7], x[8] */ |
|||
x3 = *__SIMD32(px); |
|||
|
|||
/* Read x[9] */ |
|||
x2 = _SIMD32_OFFSET(px+1); |
|||
px += 2u; |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
acc0 = __SMLALDX(x0, c0, acc0); |
|||
acc1 = __SMLALDX(x1, c0, acc1); |
|||
acc2 = __SMLALDX(x3, c0, acc2); |
|||
acc3 = __SMLALDX(x2, c0, acc3); |
|||
} |
|||
|
|||
if(k == 3u) |
|||
{ |
|||
/* Read y[srcBLen - 5], y[srcBLen - 6] */ |
|||
c0 = _SIMD32_OFFSET(py); |
|||
|
|||
/* Read x[7], x[8] */ |
|||
x3 = *__SIMD32(px); |
|||
|
|||
/* Read x[9] */ |
|||
x2 = _SIMD32_OFFSET(px+1); |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
acc0 = __SMLALDX(x0, c0, acc0); |
|||
acc1 = __SMLALDX(x1, c0, acc1); |
|||
acc2 = __SMLALDX(x3, c0, acc2); |
|||
acc3 = __SMLALDX(x2, c0, acc3); |
|||
|
|||
c0 = *(py-1); |
|||
|
|||
#ifdef ARM_MATH_BIG_ENDIAN |
|||
|
|||
c0 = c0 << 16u; |
|||
#else |
|||
|
|||
c0 = c0 & 0x0000FFFF; |
|||
#endif /* #ifdef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Read x[10] */ |
|||
x3 = _SIMD32_OFFSET(px+2); |
|||
px += 3u; |
|||
|
|||
/* Perform the multiply-accumulates */ |
|||
acc0 = __SMLALDX(x1, c0, acc0); |
|||
acc1 = __SMLALD(x2, c0, acc1); |
|||
acc2 = __SMLALDX(x2, c0, acc2); |
|||
acc3 = __SMLALDX(x3, c0, acc3); |
|||
} |
|||
|
|||
|
|||
/* Store the results in the accumulators in the destination buffer. */ |
|||
|
|||
#ifndef ARM_MATH_BIG_ENDIAN |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16); |
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16); |
|||
|
|||
#else |
|||
|
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16); |
|||
*__SIMD32(pOut)++ = |
|||
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16); |
|||
|
|||
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */ |
|||
|
|||
/* Increment the pointer pIn1 index, count by 4 */ |
|||
count += 4u; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
|
|||
/* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. |
|||
** No loop unrolling is used. */ |
|||
blkCnt = (uint32_t) blockSize2 % 0x4u; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = srcBLen >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum += (q63_t) ((q31_t) * px++ * *py--); |
|||
sum += (q63_t) ((q31_t) * px++ * *py--); |
|||
sum += (q63_t) ((q31_t) * px++ * *py--); |
|||
sum += (q63_t) ((q31_t) * px++ * *py--); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* If the srcBLen is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = srcBLen % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
sum += (q63_t) ((q31_t) * px++ * *py--); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT(sum >> 15, 16)); |
|||
|
|||
/* Increment the pointer pIn1 index, count by 1 */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
else |
|||
{ |
|||
/* If the srcBLen is not a multiple of 4, |
|||
* the blockSize2 loop cannot be unrolled by 4 */ |
|||
blkCnt = (uint32_t) blockSize2; |
|||
|
|||
while(blkCnt > 0u) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* srcBLen number of MACS should be performed */ |
|||
k = srcBLen; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulate */ |
|||
sum += (q63_t) ((q31_t) * px++ * *py--); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT(sum >> 15, 16)); |
|||
|
|||
/* Increment the MAC count */ |
|||
count++; |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = pIn1 + count; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blkCnt--; |
|||
} |
|||
} |
|||
|
|||
|
|||
/* -------------------------- |
|||
* Initializations of stage3 |
|||
* -------------------------*/ |
|||
|
|||
/* sum += x[srcALen-srcBLen+1] * y[srcBLen-1] + x[srcALen-srcBLen+2] * y[srcBLen-2] +...+ x[srcALen-1] * y[1] |
|||
* sum += x[srcALen-srcBLen+2] * y[srcBLen-1] + x[srcALen-srcBLen+3] * y[srcBLen-2] +...+ x[srcALen-1] * y[2] |
|||
* .... |
|||
* sum += x[srcALen-2] * y[srcBLen-1] + x[srcALen-1] * y[srcBLen-2] |
|||
* sum += x[srcALen-1] * y[srcBLen-1] |
|||
*/ |
|||
|
|||
/* In this stage the MAC operations are decreased by 1 for every iteration. |
|||
The count variable holds the number of MAC operations performed */ |
|||
count = srcBLen - 1u; |
|||
|
|||
/* Working pointer of inputA */ |
|||
pSrc1 = (pIn1 + srcALen) - (srcBLen - 1u); |
|||
px = pSrc1; |
|||
|
|||
/* Working pointer of inputB */ |
|||
pSrc2 = pIn2 + (srcBLen - 1u); |
|||
pIn2 = pSrc2 - 1u; |
|||
py = pIn2; |
|||
|
|||
/* ------------------- |
|||
* Stage3 process |
|||
* ------------------*/ |
|||
|
|||
/* For loop unrolling by 4, this stage is divided into two. */ |
|||
/* First part of this stage computes the MAC operations greater than 4 */ |
|||
/* Second part of this stage computes the MAC operations less than or equal to 4 */ |
|||
|
|||
/* The first part of the stage starts here */ |
|||
j = count >> 2u; |
|||
|
|||
while((j > 0u) && (blockSize3 > 0)) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = count >> 2u; |
|||
|
|||
/* First part of the processing with loop unrolling. Compute 4 MACs at a time. |
|||
** a second loop below computes MACs for the remaining 1 to 3 samples. */ |
|||
while(k > 0u) |
|||
{ |
|||
/* x[srcALen - srcBLen + 1], x[srcALen - srcBLen + 2] are multiplied |
|||
* with y[srcBLen - 1], y[srcBLen - 2] respectively */ |
|||
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum); |
|||
/* x[srcALen - srcBLen + 3], x[srcALen - srcBLen + 4] are multiplied |
|||
* with y[srcBLen - 3], y[srcBLen - 4] respectively */ |
|||
sum = __SMLALDX(*__SIMD32(px)++, *__SIMD32(py)--, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* For the next MAC operations, the pointer py is used without SIMD |
|||
* So, py is incremented by 1 */ |
|||
py = py + 1u; |
|||
|
|||
/* If the count is not a multiple of 4, compute any remaining MACs here. |
|||
** No loop unrolling is used. */ |
|||
k = count % 0x4u; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* sum += x[srcALen - srcBLen + 5] * y[srcBLen - 5] */ |
|||
sum = __SMLALD(*px++, *py--, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16)); |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = ++pSrc1; |
|||
py = pIn2; |
|||
|
|||
/* Decrement the MAC count */ |
|||
count--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize3--; |
|||
|
|||
j--; |
|||
} |
|||
|
|||
/* The second part of the stage starts here */ |
|||
/* SIMD is not used for the next MAC operations, |
|||
* so pointer py is updated to read only one sample at a time */ |
|||
py = py + 1u; |
|||
|
|||
while(blockSize3 > 0) |
|||
{ |
|||
/* Accumulator is made zero for every iteration */ |
|||
sum = 0; |
|||
|
|||
/* Apply loop unrolling and compute 4 MACs simultaneously. */ |
|||
k = count; |
|||
|
|||
while(k > 0u) |
|||
{ |
|||
/* Perform the multiply-accumulates */ |
|||
/* sum += x[srcALen-1] * y[srcBLen-1] */ |
|||
sum = __SMLALD(*px++, *py--, sum); |
|||
|
|||
/* Decrement the loop counter */ |
|||
k--; |
|||
} |
|||
|
|||
/* Store the result in the accumulator in the destination buffer. */ |
|||
*pOut++ = (q15_t) (__SSAT((sum >> 15), 16)); |
|||
|
|||
/* Update the inputA and inputB pointers for next MAC calculation */ |
|||
px = ++pSrc1; |
|||
py = pSrc2; |
|||
|
|||
/* Decrement the MAC count */ |
|||
count--; |
|||
|
|||
/* Decrement the loop counter */ |
|||
blockSize3--; |
|||
} |
|||
|
|||
/* set status as ARM_MATH_SUCCESS */ |
|||
status = ARM_MATH_SUCCESS; |
|||
} |
|||
|
|||
/* Return to application */ |
|||
return (status); |
|||
|
|||
#else |
|||
|
|||
/* Run the below code for Cortex-M0 */ |
|||
|
|||
q15_t *pIn1 = pSrcA; /* inputA pointer */ |
|||
q15_t *pIn2 = pSrcB; /* inputB pointer */ |
|||
q63_t sum; /* Accumulator */ |
|||
uint32_t i, j; /* loop counters */ |
|||
arm_status status; /* status of Partial convolution */ |
|||
|
|||
/* Check for range of output samples to be calculated */ |
|||
if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u)))) |
|||
{ |
|||
/* Set status as ARM_ARGUMENT_ERROR */ |
|||
status = ARM_MATH_ARGUMENT_ERROR; |
|||
} |
|||
else |
|||
{ |
|||
/* Loop to calculate convolution for output length number of values */ |
|||
for (i = firstIndex; i <= (firstIndex + numPoints - 1); i++) |
|||
{ |
|||
/* Initialize sum with zero to carry on MAC operations */ |
|||
sum = 0; |
|||
|
|||
/* Loop to perform MAC operations according to convolution equation */ |
|||
for (j = 0; j <= i; j++) |
|||
{ |
|||
/* Check the array limitations */ |
|||
if(((i - j) < srcBLen) && (j < srcALen)) |
|||
{ |
|||
/* z[i] += x[i-j] * y[j] */ |
|||
sum += ((q31_t) pIn1[j] * (pIn2[i - j])); |
|||
} |
|||
} |
|||
|
|||
/* Store the output in the destination buffer */ |
|||
pDst[i] = (q15_t) __SSAT((sum >> 15u), 16u); |
|||
} |
|||
/* set status as ARM_SUCCESS as there are no argument errors */ |
|||
status = ARM_MATH_SUCCESS; |
|||
} |
|||
return (status); |
|||
|
|||
#endif /* #if (defined(ARM_MATH_CM4) || defined(ARM_MATH_CM3)) && !defined(UNALIGNED_SUPPORT_DISABLE) */ |
|||
|
|||
} |
|||
|
|||
/** |
|||
* @} end of PartialConv group |
|||
*/ |
Some files were not shown because too many files changed in this diff
Write
Preview
Loading…
Cancel
Save
Reference in new issue