$NOMOD51 ;**** **** **** **** **** ; ; Bluejay digital ESC firmware for controlling brushless motors in multirotors ; ; Copyright 2020 Mathias Rasmussen ; Copyright 2011, 2012 Steffen Skaug ; ; This file is part of Bluejay. ; ; Bluejay is free software: you can redistribute it and/or modify ; it under the terms of the GNU General Public License as published by ; the Free Software Foundation, either version 3 of the License, or ; (at your option) any later version. ; ; Bluejay is distributed in the hope that it will be useful, ; but WITHOUT ANY WARRANTY; without even the implied warranty of ; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ; GNU General Public License for more details. ; ; You should have received a copy of the GNU General Public License ; along with Bluejay. If not, see . ; ;**** **** **** **** **** ; ; Bluejay is a fork of BLHeli_S by Steffen Skaug. ; ; The input signal can be DShot with rates: DShot150, DShot300 and DShot600. ; ; This file is best viewed with tab width set to 5. ; ;**** **** **** **** **** ; Master clock is internal 24MHz oscillator (or 48MHz, for which the times below are halved) ; Although 24/48 are used in the code, the exact clock frequencies are 24.5MHz or 49.0 MHz ; Timer 0 (41.67ns counts) always counts up and is used for ; - RC pulse measurement ; - DShot telemetry signal ; Timer 1 (41.67ns counts) always counts up and is used for ; - DShot frame sync detection ; Timer 2 (500ns counts) always counts up and is used for ; - RC pulse timeout counts and commutation times ; Timer 3 (500ns counts) always counts up and is used for ; - Commutation timeouts ; PCA0 (41.67ns counts) always counts up and is used for ; - Hardware PWM generation ; ;**** **** **** **** **** ; Motor control: ; - Brushless motor control with 6 states for each electrical 360 degrees ; - An advance timing of 0deg has zero cross 30deg after one commutation and 30deg before the next ; - Timing advance in this implementation is set to 15deg nominally ; - Motor pwm is always damped light (aka complementary pwm, regenerative braking) ; Motor sequence starting from zero crossing: ; - Timer wait: Wt_Comm 15deg ; Time to wait from zero cross to actual commutation ; - Timer wait: Wt_Advance 15deg ; Time to wait for timing advance. Nominal commutation point is after this ; - Timer wait: Wt_Zc_Scan 7.5deg ; Time to wait before looking for zero cross ; - Scan for zero cross 22.5deg ; Nominal, with some motor variations ; ; Motor startup: ; There is a startup phase and an initial run phase, before normal bemf commutation run begins. ; ;**** **** **** **** **** ; List of enumerated supported ESCs A_ EQU 1 ; X X RC X MC MB MA CC X X Cc Cp Bc Bp Ac Ap B_ EQU 2 ; X X RC X MC MB MA CC X X Ap Ac Bp Bc Cp Cc C_ EQU 3 ; Ac Ap MC MB MA CC X RC X X X X Cc Cp Bc Bp D_ EQU 4 ; X X RC X CC MA MC MB X X Cc Cp Bc Bp Ac Ap Com fets inverted E_ EQU 5 ; L1 L0 RC X MC MB MA CC X L2 Cc Cp Bc Bp Ac Ap A with LEDs F_ EQU 6 ; X X RC X MA MB MC CC X X Cc Cp Bc Bp Ac Ap G_ EQU 7 ; X X RC X CC MA MC MB X X Cc Cp Bc Bp Ac Ap Like D, but non-inverted com fets H_ EQU 8 ; RC X X X MA MB CC MC X Ap Bp Cp X Ac Bc Cc I_ EQU 9 ; X X RC X MC MB MA CC X X Ac Bc Cc Ap Bp Cp J_ EQU 10 ; L2 L1 L0 RC CC MB MC MA X X Cc Bc Ac Cp Bp Ap LEDs K_ EQU 11 ; X X MC X MB CC MA RC X X Ap Bp Cp Cc Bc Ac Com fets inverted L_ EQU 12 ; X X RC X CC MA MB MC X X Ac Bc Cc Ap Bp Cp M_ EQU 13 ; MA MC CC MB RC L0 X X X Cc Bc Ac Cp Bp Ap X LED N_ EQU 14 ; X X RC X MC MB MA CC X X Cp Cc Bp Bc Ap Ac O_ EQU 15 ; X X RC X CC MA MC MB X X Cc Cp Bc Bp Ac Ap Like D, but low side pwm P_ EQU 16 ; X X RC MA CC MB MC X X Cc Bc Ac Cp Bp Ap X Q_ EQU 17 ; Cp Bp Ap L1 L0 X RC X X MA MB MC CC Cc Bc Ac LEDs R_ EQU 18 ; X X RC X MC MB MA CC X X Ac Bc Cc Ap Bp Cp S_ EQU 19 ; X X RC X CC MA MC MB X X Cc Cp Bc Bp Ac Ap Like O, but com fets inverted T_ EQU 20 ; RC X MA X MB CC MC X X X Cp Bp Ap Ac Bc Cc U_ EQU 21 ; MA MC CC MB RC L0 L1 L2 X Cc Bc Ac Cp Bp Ap X Like M, but with 3 LEDs V_ EQU 22 ; Cc X RC X MC CC MB MA X Ap Ac Bp X X Bc Cp W_ EQU 23 ; RC MC MB X CC MA X X X Ap Bp Cp X X X X Tristate gate driver ;**** **** **** **** **** ; Select the port mapping to use (or unselect all for use with external batch compile file) ;ESCNO EQU A_ ;**** **** **** **** **** ; Select the MCU type (or unselect for use with external batch compile file) ;MCU_48MHZ EQU 0 ;**** **** **** **** **** ; Select the fet dead time (or unselect for use with external batch compile file) ;FETON_DELAY EQU 15 ; 20.4ns per step ;**** **** **** **** **** ; Select the pwm frequency (or unselect for use with external batch compile file) ;PWM_FREQ EQU 0 ; 0=24, 1=48, 2=96 kHz $include (Common.inc) ; Include common source code for EFM8BBx based ESCs ;**** **** **** **** **** ; Programming defaults ; DEFAULT_PGM_STARTUP_PWR EQU 9 ; 1=0.031 2=0.047 3=0.063 4=0.094 5=0.125 6=0.188 7=0.25 8=0.38 9=0.50 10=0.75 11=1.00 12=1.25 13=1.50 DEFAULT_PGM_COMM_TIMING EQU 3 ; 1=Low 2=MediumLow 3=Medium 4=MediumHigh 5=High DEFAULT_PGM_DEMAG_COMP EQU 2 ; 1=Disabled 2=Low 3=High DEFAULT_PGM_DIRECTION EQU 1 ; 1=Normal 2=Reversed 3=Bidir 4=Bidir rev DEFAULT_PGM_BEEP_STRENGTH EQU 40 ; Beep strength DEFAULT_PGM_BEACON_STRENGTH EQU 80 ; Beacon strength DEFAULT_PGM_BEACON_DELAY EQU 4 ; 1=1m 2=2m 3=5m 4=10m 5=Infinite ; COMMON DEFAULT_PGM_ENABLE_TEMP_PROT EQU 7 ; 0=Disabled 1=80C 2=90C 3=100C 4=110C 5=120C 6=130C 7=140C DEFAULT_PGM_ENABLE_POWER_PROT EQU 1 ; 1=Enabled 0=Disabled DEFAULT_PGM_BRAKE_ON_STOP EQU 0 ; 1=Enabled 0=Disabled DEFAULT_PGM_LED_CONTROL EQU 0 ; Byte for LED control. 2bits per LED, 0=Off, 1=On ;**** **** **** **** **** ; Temporary register definitions Temp1 EQU R0 Temp2 EQU R1 Temp3 EQU R2 Temp4 EQU R3 Temp5 EQU R4 Temp6 EQU R5 Temp7 EQU R6 Temp8 EQU R7 ;**** **** **** **** **** ; RAM definitions DSEG AT 20h ; Ram data segment, bit-addressable Bit_Access: DS 1 ; MUST BE AT THIS ADDRESS. Variable at bit accessible address (for non interrupt routines) Bit_Access_Int: DS 1 ; Variable at bit accessible address (for interrupts) Rcp_Outside_Range_Cnt: DS 1 ; RC pulse outside range counter (incrementing) Rcp_Timeout_Cntd: DS 1 ; RC pulse timeout counter (decrementing) Flags0: DS 1 ; State flags. Reset upon init_start Flag_T3_PENDING BIT Flags0.0 ; Timer 3 pending flag Flag_DEMAG_DETECTED BIT Flags0.1 ; Set when excessive demag time is detected Flag_COMP_TIMED_OUT BIT Flags0.2 ; Set when comparator reading timed out Flag_PACKET_PENDING BIT Flags0.4 ; DShot telemetry data packet is ready to be sent Flags1: DS 1 ; State flags. Reset upon init_start Flag_MOTOR_STARTED BIT Flags1.2 ; Set when motor is started Flag_DIR_CHANGE_BRAKE BIT Flags1.3 ; Set when braking before direction change Flag_HIGH_RPM BIT Flags1.4 ; Set when motor rpm is high (Comm_Period4x_H less than 2) Flag_LOW_PWM_POWER BIT Flags1.5 ; Set when pwm duty cycle is below 50% Flags_Startup: DS 1 ; State flags. Reset upon init_start Flag_STARTUP_PHASE BIT Flags_Startup.0 ; Set when in startup phase Flag_INITIAL_RUN_PHASE BIT Flags_Startup.1 ; Set when in initial run phase, before synchronized run is achieved ; Remaining bits must be cleared Flags2: DS 1 ; State flags. NOT reset upon init_start Flag_RCP_DIR_REV BIT Flags2.5 ; RC pulse direction in bidirectional mode Flag_RCP_DSHOT_INVERTED BIT Flags2.7 ; DShot RC pulse input is inverted (and supports telemetry) Flags3: DS 1 ; State flags. NOT reset upon init_start Flag_PGM_DIR_REV BIT Flags3.0 ; Programmed direction. 0=normal, 1=reversed Flag_PGM_BIDIR_REV BIT Flags3.1 ; Programmed bidirectional direction. 0=normal, 1=reversed Flag_PGM_BIDIR BIT Flags3.2 ; Programmed bidirectional operation. 0=normal, 1=bidirectional Flag_SKIP_T2_INT BIT Flags3.3 ; Set for 48MHz MCUs when timer 2 interrupt shall be ignored Flag_CLOCK_SET_AT_48MHZ BIT Flags3.4 ; Set if 48MHz MCUs run at 48MHz Flag_RCP_STOP BIT Flags3.5 ; Set if the RC pulse value is zero Tlm_Data_L: DS 1 ; DShot telemetry data low byte Tlm_Data_H: DS 1 ; DShot telemetry data high byte Tmp_B: DS 1 DSEG AT 30h ; Ram data segment, direct addressing Power_On_Wait_Cnt_L: DS 1 ; Power on wait counter (lo byte) Power_On_Wait_Cnt_H: DS 1 ; Power on wait counter (hi byte) Startup_Cnt: DS 1 ; Startup phase commutations counter (incrementing) Startup_Zc_Timeout_Cntd: DS 1 ; Startup zero cross timeout counter (decrementing) Initial_Run_Rot_Cntd: DS 1 ; Initial run rotations counter (decrementing) Stall_Cnt: DS 1 ; Counts start/run attempts that resulted in stall. Reset upon a proper stop Demag_Detected_Metric: DS 1 ; Metric used to gauge demag event frequency Demag_Pwr_Off_Thresh: DS 1 ; Metric threshold above which power is cut Low_Rpm_Pwr_Slope: DS 1 ; Sets the slope of power increase for low rpms Timer2_X: DS 1 ; Timer 2 extended byte Prev_Comm_L: DS 1 ; Previous commutation timer 3 timestamp (lo byte) Prev_Comm_H: DS 1 ; Previous commutation timer 3 timestamp (hi byte) Prev_Comm_X: DS 1 ; Previous commutation timer 3 timestamp (ext byte) Prev_Prev_Comm_L: DS 1 ; Pre-previous commutation timer 3 timestamp (lo byte) Prev_Prev_Comm_H: DS 1 ; Pre-previous commutation timer 3 timestamp (hi byte) Comm_Period4x_L: DS 1 ; Timer 3 counts between the last 4 commutations (lo byte) Comm_Period4x_H: DS 1 ; Timer 3 counts between the last 4 commutations (hi byte) Comparator_Read_Cnt: DS 1 ; Number of comparator reads done Wt_Adv_Start_L: DS 1 ; Timer 3 start point for commutation advance timing (lo byte) Wt_Adv_Start_H: DS 1 ; Timer 3 start point for commutation advance timing (hi byte) Wt_Zc_Scan_Start_L: DS 1 ; Timer 3 start point from commutation to zero cross scan (lo byte) Wt_Zc_Scan_Start_H: DS 1 ; Timer 3 start point from commutation to zero cross scan (hi byte) Wt_Zc_Tout_Start_L: DS 1 ; Timer 3 start point for zero cross scan timeout (lo byte) Wt_Zc_Tout_Start_H: DS 1 ; Timer 3 start point for zero cross scan timeout (hi byte) Wt_Comm_Start_L: DS 1 ; Timer 3 start point from zero cross to commutation (lo byte) Wt_Comm_Start_H: DS 1 ; Timer 3 start point from zero cross to commutation (hi byte) Dshot_Cmd: DS 1 ; DShot command Dshot_Cmd_Cnt: DS 1 ; DShot command count Rcp_Stop_Cnt: DS 1 ; Counter for RC pulses below stop value Power_Pwm_Reg_L: DS 1 ; Power pwm register setting (lo byte) Power_Pwm_Reg_H: DS 1 ; Power pwm register setting (hi byte). 0x3F is minimum power Damp_Pwm_Reg_L: DS 1 ; Damping pwm register setting (lo byte) Damp_Pwm_Reg_H: DS 1 ; Damping pwm register setting (hi byte) Pwm_Limit: DS 1 ; Maximum allowed pwm Pwm_Limit_By_Rpm: DS 1 ; Maximum allowed pwm for low or high rpms Pwm_Limit_Beg: DS 1 ; Initial pwm limit Adc_Conversion_Cnt: DS 1 ; Adc conversion counter Current_Average_Temp: DS 1 ; Current average temperature (lo byte ADC reading, assuming hi byte is 1) Beep_Strength: DS 1 ; Strength of beeps Flash_Key_1: DS 1 ; Flash key one Flash_Key_2: DS 1 ; Flash key two Temp_Prot_Limit: DS 1 ; Temperature protection limit DShot_Pwm_Thr: DS 1 ; DShot pulse width threshold value DShot_Timer_Preset: DS 1 ; DShot timer preset for frame sync detection DShot_Frame_Start_L: DS 1 ; DShot frame start timestamp (lo byte) DShot_Frame_Start_H: DS 1 ; DShot frame start timestamp (hi byte) DShot_Frame_Length_Thr: DS 1 ; DShot frame length criteria (in units of 4 timer 2 ticks) ; Pulse durations for GCR encoding DShot telemetry data DShot_GCR_Pulse_Time_1: DS 1 ; Encodes binary: 1 DShot_GCR_Pulse_Time_2: DS 1 ; Encodes binary: 01 DShot_GCR_Pulse_Time_3: DS 1 ; Encodes binary: 001 DShot_GCR_Pulse_Time_1_Tmp: DS 1 DShot_GCR_Pulse_Time_2_Tmp: DS 1 DShot_GCR_Pulse_Time_3_Tmp: DS 1 DShot_GCR_Start_Delay: DS 1 ; Indirect addressing data segment. The variables below must be in this sequence ISEG AT 080h _Pgm_Gov_P_Gain: DS 1 ; Governor P gain _Pgm_Gov_I_Gain: DS 1 ; Governor I gain _Pgm_Gov_Mode: DS 1 ; Governor mode _Pgm_Low_Voltage_Lim: DS 1 ; Low voltage limit _Pgm_Motor_Gain: DS 1 ; Motor gain _Pgm_Motor_Idle: DS 1 ; Motor idle speed Pgm_Startup_Pwr: DS 1 ; Startup power _Pgm_Pwm_Freq: DS 1 ; PWM frequency Pgm_Direction: DS 1 ; Rotation direction _Pgm_Input_Pol: DS 1 ; Input PWM polarity Initialized_L_Dummy: DS 1 ; Place holder Initialized_H_Dummy: DS 1 ; Place holder _Pgm_Enable_TX_Program: DS 1 ; Enable/disable value for TX programming _Pgm_Main_Rearm_Start: DS 1 ; Enable/disable re-arming main every start _Pgm_Gov_Setup_Target: DS 1 ; Main governor setup target _Pgm_Startup_Rpm: DS 1 ; Startup RPM _Pgm_Startup_Accel: DS 1 ; Startup acceleration _Pgm_Volt_Comp: DS 1 ; Voltage comp Pgm_Comm_Timing: DS 1 ; Commutation timing _Pgm_Damping_Force: DS 1 ; Damping force _Pgm_Gov_Range: DS 1 ; Governor range _Pgm_Startup_Method: DS 1 ; Startup method _Pgm_Min_Throttle: DS 1 ; Minimum throttle _Pgm_Max_Throttle: DS 1 ; Maximum throttle Pgm_Beep_Strength: DS 1 ; Beep strength Pgm_Beacon_Strength: DS 1 ; Beacon strength Pgm_Beacon_Delay: DS 1 ; Beacon delay _Pgm_Throttle_Rate: DS 1 ; Throttle rate Pgm_Demag_Comp: DS 1 ; Demag compensation _Pgm_BEC_Voltage_High: DS 1 ; BEC voltage _Pgm_Center_Throttle: DS 1 ; Center throttle (in bidirectional mode) _Pgm_Main_Spoolup_Time: DS 1 ; Main spoolup time Pgm_Enable_Temp_Prot: DS 1 ; Temperature protection enable Pgm_Enable_Power_Prot: DS 1 ; Low RPM power protection enable _Pgm_Enable_Pwm_Input: DS 1 ; Enable PWM input signal _Pgm_Pwm_Dither: DS 1 ; Output PWM dither Pgm_Brake_On_Stop: DS 1 ; Braking when throttle is zero Pgm_LED_Control: DS 1 ; LED control ; The sequence of the variables below is no longer of importance Pgm_Startup_Pwr_Decoded: DS 1 ; Programmed startup power decoded ; Indirect addressing data segments ISEG AT 0B0h Stack: DS 16 ; Reserved stack space ISEG AT 0C0h Dithering_Patterns: DS 16 ISEG AT 0D0h Temp_Storage: DS 48 ; Temporary storage ;**** **** **** **** **** CSEG AT 1A00h ; "Eeprom" segment EEPROM_FW_MAIN_REVISION EQU 0 ; Main revision of the firmware EEPROM_FW_SUB_REVISION EQU 40 ; Sub revision of the firmware EEPROM_LAYOUT_REVISION EQU 33 ; Revision of the EEPROM layout Eep_FW_Main_Revision: DB EEPROM_FW_MAIN_REVISION ; EEPROM firmware main revision number Eep_FW_Sub_Revision: DB EEPROM_FW_SUB_REVISION ; EEPROM firmware sub revision number Eep_Layout_Revision: DB EEPROM_LAYOUT_REVISION ; EEPROM layout revision number _Eep_Pgm_Gov_P_Gain: DB 0FFh _Eep_Pgm_Gov_I_Gain: DB 0FFh _Eep_Pgm_Gov_Mode: DB 0FFh _Eep_Pgm_Low_Voltage_Lim: DB 0FFh _Eep_Pgm_Motor_Gain: DB 0FFh _Eep_Pgm_Motor_Idle: DB 0FFh Eep_Pgm_Startup_Pwr: DB DEFAULT_PGM_STARTUP_PWR ; EEPROM copy of programmed startup power _Eep_Pgm_Pwm_Freq: DB 0FFh Eep_Pgm_Direction: DB DEFAULT_PGM_DIRECTION ; EEPROM copy of programmed rotation direction _Eep__Pgm_Input_Pol: DB 0FFh Eep_Initialized_L: DB 055h ; EEPROM initialized signature low byte Eep_Initialized_H: DB 0AAh ; EEPROM initialized signature high byte _Eep_Enable_TX_Program: DB 0FFh ; EEPROM TX programming enable _Eep_Main_Rearm_Start: DB 0FFh _Eep_Pgm_Gov_Setup_Target: DB 0FFh _Eep_Pgm_Startup_Rpm: DB 0FFh _Eep_Pgm_Startup_Accel: DB 0FFh _Eep_Pgm_Volt_Comp: DB 0FFh Eep_Pgm_Comm_Timing: DB DEFAULT_PGM_COMM_TIMING ; EEPROM copy of programmed commutation timing _Eep_Pgm_Damping_Force: DB 0FFh _Eep_Pgm_Gov_Range: DB 0FFh _Eep_Pgm_Startup_Method: DB 0FFh _Eep_Pgm_Min_Throttle: DB 0FFh ; EEPROM copy of programmed minimum throttle _Eep_Pgm_Max_Throttle: DB 0FFh ; EEPROM copy of programmed minimum throttle Eep_Pgm_Beep_Strength: DB DEFAULT_PGM_BEEP_STRENGTH ; EEPROM copy of programmed beep strength Eep_Pgm_Beacon_Strength: DB DEFAULT_PGM_BEACON_STRENGTH ; EEPROM copy of programmed beacon strength Eep_Pgm_Beacon_Delay: DB DEFAULT_PGM_BEACON_DELAY ; EEPROM copy of programmed beacon delay _Eep_Pgm_Throttle_Rate: DB 0FFh Eep_Pgm_Demag_Comp: DB DEFAULT_PGM_DEMAG_COMP ; EEPROM copy of programmed demag compensation _Eep_Pgm_BEC_Voltage_High: DB 0FFh _Eep_Pgm_Center_Throttle: DB 0FFh ; EEPROM copy of programmed center throttle _Eep_Pgm_Main_Spoolup_Time: DB 0FFh Eep_Pgm_Temp_Prot_Enable: DB DEFAULT_PGM_ENABLE_TEMP_PROT ; EEPROM copy of programmed temperature protection enable Eep_Pgm_Enable_Power_Prot: DB DEFAULT_PGM_ENABLE_POWER_PROT ; EEPROM copy of programmed low rpm power protection enable _Eep_Pgm_Enable_Pwm_Input: DB 0FFh _Eep_Pgm_Pwm_Dither: DB 0FFh Eep_Pgm_Brake_On_Stop: DB DEFAULT_PGM_BRAKE_ON_STOP ; EEPROM copy of programmed braking when throttle is zero Eep_Pgm_LED_Control: DB DEFAULT_PGM_LED_CONTROL ; EEPROM copy of programmed LED control Eep_Dummy: DB 0FFh ; EEPROM address for safety reason CSEG AT 1A60h Eep_Name: DB "Bluejay (BETA) " ; Name tag (16 Bytes) ;**** **** **** **** **** ; DShot Telemetry Macros DSHOT_TLM_CLOCK EQU 24500000 ; 24.5MHz DSHOT_TLM_START_DELAY EQU -1 ; Start telemetry after 1 tick (~30us after receiving DShot cmd) DSHOT_TLM_PREDELAY EQU 6 ; 6 timer 0 ticks inherent delay IF MCU_48MHZ == 1 DSHOT_TLM_CLOCK_48 EQU 49000000 ; 49MHz DSHOT_TLM_START_DELAY_48 EQU -(14 * 49 / 4) ; Start telemetry after 14us (~30us after receiving DShot cmd) DSHOT_TLM_PREDELAY_48 EQU 8 ; 8 timer 0 ticks inherent delay ENDIF Set_DShot_Tlm_Bitrate MACRO rate mov DShot_GCR_Pulse_Time_1, #(DSHOT_TLM_PREDELAY - (1 * DSHOT_TLM_CLOCK / 4 / rate)) mov DShot_GCR_Pulse_Time_2, #(DSHOT_TLM_PREDELAY - (2 * DSHOT_TLM_CLOCK / 4 / rate)) mov DShot_GCR_Pulse_Time_3, #(DSHOT_TLM_PREDELAY - (3 * DSHOT_TLM_CLOCK / 4 / rate)) mov DShot_GCR_Start_Delay, #DSHOT_TLM_START_DELAY IF MCU_48MHZ == 1 mov DShot_GCR_Pulse_Time_1_Tmp, #(DSHOT_TLM_PREDELAY_48 - (1 * DSHOT_TLM_CLOCK_48 / 4 / rate)) mov DShot_GCR_Pulse_Time_2_Tmp, #(DSHOT_TLM_PREDELAY_48 - (2 * DSHOT_TLM_CLOCK_48 / 4 / rate)) mov DShot_GCR_Pulse_Time_3_Tmp, #(DSHOT_TLM_PREDELAY_48 - (3 * DSHOT_TLM_CLOCK_48 / 4 / rate)) ENDIF ENDM Push_Mem MACRO reg, val mov @reg, val ;; Write value to memory address pointed to by register inc reg ;; Increment pointer ENDM DShot_GCR_Get_Time MACRO mov A, DShot_GCR_Pulse_Time_2 cjne A, Tmp_B, ($+5) mov A, DShot_GCR_Pulse_Time_3 ENDM ; Prepare telemetry packet while waiting for timer 3 to wrap Wait_For_Timer3 MACRO LOCAL wait_for_t3 done_waiting jb Flag_PACKET_PENDING, wait_for_t3 jnb Flag_T3_PENDING, done_waiting call dshot_tlm_create_packet wait_for_t3: jnb Flag_T3_PENDING, done_waiting sjmp wait_for_t3 done_waiting: ENDM Early_Return_Packet_Stage MACRO num Early_Return_Packet_Stage_ num, %(num+1) ENDM Early_Return_Packet_Stage_ MACRO num next IF num > 0 inc Temp5 ;; Increment current packet stage jb Flag_T3_PENDING, dshot_packet_stage_&num ;; Return early if timer 3 has wrapped pop PSW ret dshot_packet_stage_&num: ENDIF IF num < 5 cjne Temp5, #(num), dshot_packet_stage_&next ;; If this is not current stage, skip to next ENDIF ENDM IF FETON_DELAY == 0 PWM_CENTERED EQU 0 ELSE PWM_CENTERED EQU 1 ENDIF IF MCU_48MHZ < 2 AND PWM_FREQ < 3 ; Number of bits in pwm high byte PWM_BITS_H EQU (2 + MCU_48MHZ - PWM_CENTERED - PWM_FREQ) ENDIF Decode_DShot_2Bit MACRO dest, decode_fail movx A, @Temp1 mov Temp7, A clr C subb A, Temp6 ; Subtract previous timestamp clr C subb A, Temp2 jc decode_fail ; Check that bit is longer than minimum subb A, Temp2 ; Check if bit is zero or one mov A, dest ; Shift bit into data byte rlc A mov dest, A inc Temp1 ; Next bit movx A, @Temp1 mov Temp6, A clr C subb A, Temp7 clr C subb A, Temp2 jc decode_fail subb A, Temp2 mov A, dest rlc A mov dest, A inc Temp1 ENDM ;**** **** **** **** **** Interrupt_Table_Definition ; SiLabs interrupts CSEG AT 80h ; Code segment after interrupt vectors ;**** **** **** **** **** ; Table definitions STARTUP_POWER_TABLE: DB 1, 2, 3, 4, 6, 9, 12, 18, 25, 37, 50, 62, 75 ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Timer 0 interrupt routine ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** t0_int: push PSW mov PSW, #10h ; Select register bank 2 for this interrupt dec Temp1 cjne Temp1, #(Temp_Storage-1), t0_int_dshot_tlm_transition ; If last pulse is high telemetry is finished jb RTX_PORT.RTX_PIN, t0_int_dshot_tlm_finish inc Temp1 ; Otherwise wait for it to return to high t0_int_dshot_tlm_transition: cpl RTX_PORT.RTX_PIN ; Invert signal level mov TL0, @Temp1 ; Schedule next update pop PSW reti t0_int_dshot_tlm_finish: ; Configure RTX_PIN for digital input anl RTX_MDOUT, #(NOT (1 SHL RTX_PIN)) ; Set RTX_PIN output mode to open-drain setb RTX_PORT.RTX_PIN ; Float high clr IE_ET0 ; Disable timer 0 interrupts ; todo: dshot150 ;mov CKCON0, Temp2 ; Restore normal DShot timer 0/1 clock settings mov CKCON0, #0Ch mov TMOD, #0AAh ; Timer 0/1 gated by INT0/1 clr TCON_IE0 ; Clear int0 pending flag clr TCON_IE1 ; Clear int1 pending flag mov TL0, #0 ; Reset timer 0 count setb IE_EX0 ; Enable int0 interrupts setb IE_EX1 ; Enable int1 interrupts Enable_PCA_Interrupt ; Enable pca interrupts clr Flag_PACKET_PENDING pop PSW reti ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Timer 1 interrupt routine ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** t1_int: clr IE_EX0 ; Disable int0 interrupts clr TCON_TR1 ; Stop timer 1 mov TL1, DShot_Timer_Preset ; Reset sync timer push PSW mov PSW, #8h ; Select register bank 1 for this interrupt push ACC push B clr TMR2CN0_TR2 ; Timer 2 disabled mov Temp2, TMR2L ; Read timer value mov Temp3, TMR2H setb TMR2CN0_TR2 ; Timer 2 enabled ; Check frame time length clr C mov A, Temp2 subb A, DShot_Frame_Start_L mov Temp2, A mov A, Temp3 subb A, DShot_Frame_Start_H jnz t1_int_frame_fail ; Frame too long clr C mov A, Temp2 subb A, DShot_Frame_Length_Thr jc t1_int_frame_fail ; Frame too short subb A, DShot_Frame_Length_Thr jnc t1_int_frame_fail ; Frame too long ; Check that correct number of pulses is received cjne Temp1, #16, t1_int_frame_fail ; Read current pointer ; Decode transmitted data mov Temp1, #0 ; Set pointer mov Temp2, DShot_Pwm_Thr ; DShot pulse width criteria mov Temp6, #0 ; Reset timestamp ; Decode DShot data Msb. Use more code space to save time (by not using loop) Decode_DShot_2Bit Temp5, t1_int_frame_fail Decode_DShot_2Bit Temp5, t1_int_frame_fail sjmp t1_int_decode_lsb t1_int_frame_fail: sjmp t1_int_outside_range t1_int_decode_lsb: ; Decode DShot data Lsb Decode_DShot_2Bit Temp4, t1_int_outside_range Decode_DShot_2Bit Temp4, t1_int_outside_range Decode_DShot_2Bit Temp4, t1_int_outside_range Decode_DShot_2Bit Temp4, t1_int_outside_range sjmp t1_int_decode_checksum t1_int_outside_range: inc Rcp_Outside_Range_Cnt mov A, Rcp_Outside_Range_Cnt jnz ($+4) dec Rcp_Outside_Range_Cnt clr C mov A, Rcp_Outside_Range_Cnt subb A, #50 ; Allow a given number of outside pulses jc t1_int_exit_timeout ; If outside limits - ignore first pulses setb Flag_RCP_STOP ; Set pulse length to zero clr A mov Dshot_Cmd, A ; Clear DShot command mov Dshot_Cmd_Cnt, A ; Clear DShot command count ajmp t1_int_exit_no_tlm ; Exit without resetting timeout t1_int_exit_timeout: mov Rcp_Timeout_Cntd, #10 ; Set timeout count ajmp t1_int_exit_no_tlm t1_int_decode_checksum: ; Decode DShot data checksum Decode_DShot_2Bit Temp3, t1_int_outside_range Decode_DShot_2Bit Temp3, t1_int_outside_range ; XOR check (in inverted data, which is ok), only low nibble is considered mov A, Temp4 swap A xrl A, Temp4 xrl A, Temp5 xrl A, Temp3 jnb Flag_RCP_DSHOT_INVERTED, ($+4) cpl A ; Invert checksum if using inverted DShot anl A, #0Fh jnz t1_int_outside_range ; XOR check ; Invert DShot data and subtract 96 (still 12 bits) clr C mov A, Temp4 cpl A mov Temp3, A subb A, #96 mov Temp4, A mov A, Temp5 cpl A anl A, #0Fh subb A, #0 mov Temp5, A jnc t1_normal_range mov A, Temp3 ; Check for 0 or DShot command mov Temp5, #0 mov Temp4, #0 jz t1_normal_range mov Temp3, #0 clr C ; We are in the special DShot range rrc A ; Divide by 2 jnc t1_dshot_set_cmd ; Check for tlm bit set (if not telemetry, Temp3 will be zero and result in invalid command) mov Temp3, A cjne A, Dshot_Cmd, t1_dshot_set_cmd inc Dshot_Cmd_Cnt sjmp t1_normal_range t1_dshot_set_cmd: mov Dshot_Cmd, Temp3 mov Dshot_Cmd_Cnt, #0 t1_normal_range: ; Check for bidirectional operation (0=stop, 96-2095->fwd, 2096-4095->rev) jnb Flag_PGM_BIDIR, t1_int_not_bidir ; If not bidirectional operation - branch ; Subtract 2000 (still 12 bits) clr C mov A, Temp4 subb A, #0D0h mov B, A mov A, Temp5 subb A, #07h clr Flag_RCP_DIR_REV jc t1_int_bidir_rev_chk ; If result is negative - branch mov Temp4, B mov Temp5, A setb Flag_RCP_DIR_REV t1_int_bidir_rev_chk: jb Flag_PGM_BIDIR_REV, ($+5) cpl Flag_RCP_DIR_REV clr C ; Multiply throttle value by 2 mov A, Temp4 rlc A mov Temp4, A mov A, Temp5 rlc A mov Temp5, A t1_int_not_bidir: ; Generate 4/256 mov A, Temp5 add A, Temp5 addc A, Temp5 addc A, Temp5 mov Temp3, A ; Align to 11 bits clr C mov A, Temp5 rrc A mov Temp5, A mov A, Temp4 rrc A mov Temp4, A ; Scale from 2000 to 2048 mov A, Temp4 add A, Temp3 ; Holds 4/128 mov Temp4, A mov A, Temp5 addc A, #0 mov Temp5, A jnb ACC.3, ($+7) mov Temp4, #0FFh ; Set maximum 11-bit value mov Temp5, #07h ; Boost pwm during direct start mov A, Flags_Startup jz t1_int_startup_boosted jb Flag_MOTOR_STARTED, t1_int_startup_boosted ; Do not boost when changing direction in bidirectional mode ; Add an extra power boost during start mov Temp6, Stall_Cnt inc Temp6 mov B, #31 t1_int_startup_boost_stall: mov A, Temp4 add A, B mov Temp4, A mov A, Temp5 addc A, #0 mov Temp5, A mov A, B rl A ; Add more boost when stalling mov B, A djnz Temp6, t1_int_startup_boost_stall jnb ACC.3, ($+7) mov Temp4, #0FFh ; Set maximum 11-bit value mov Temp5, #07h t1_int_startup_boosted: ; Set 8-bit value mov A, Temp4 anl A, #0F8h orl A, Temp5 ; Assumes Temp5 to be 3-bit (11-bit rcp) swap A rl A mov Temp2, A jnz t1_int_rcp_not_zero mov A, Temp4 ; New_Rcp (Temp2) is only zero if all 11 bits are zero jnz t1_int_rcp_not_zero setb Flag_RCP_STOP sjmp t1_int_zero_rcp_checked t1_int_rcp_not_zero: mov Rcp_Stop_Cnt, #0 ; Reset rcp stop counter clr Flag_RCP_STOP ; Pulse ready t1_int_zero_rcp_checked: ; Decrement outside range counter mov A, Rcp_Outside_Range_Cnt jz ($+4) dec Rcp_Outside_Range_Cnt ; Set pwm limit clr C mov A, Pwm_Limit ; Limit to the smallest mov Temp6, A ; Store limit in Temp6 subb A, Pwm_Limit_By_Rpm jc ($+4) mov Temp6, Pwm_Limit_By_Rpm ; Check against limit clr C mov A, Temp6 subb A, Temp2 ; 8-bit rc pulse jnc t1_int_scale_pwm_resolution IF PWM_BITS_H == 0 ; 8-bit pwm mov A, Temp6 mov Temp2, A ELSE mov A, Temp6 ; Multiply limit by 8 for 11-bit pwm mov B, #8 mul AB mov Temp4, A mov Temp5, B ENDIF t1_int_scale_pwm_resolution: ; Scale pwm resolution and invert IF PWM_BITS_H == 3 ; 11-bit pwm mov A, Temp5 cpl A anl A, #7 mov Temp3, A mov A, Temp4 cpl A mov Temp2, A ELSEIF PWM_BITS_H == 2 ; 10-bit pwm clr C mov A, Temp5 rrc A cpl A anl A, #3 mov Temp3, A mov A, Temp4 rrc A cpl A mov Temp2, A ELSEIF PWM_BITS_H == 1 ; 9-bit pwm mov B, Temp5 mov A, Temp4 mov C, B.0 rrc A mov C, B.1 rrc A cpl A mov Temp2, A mov A, Temp5 rr A rr A cpl A anl A, #1 mov Temp3, A ELSEIF PWM_BITS_H == 0 ; 8-bit pwm mov A, Temp2 ; Temp2 already 8-bit cpl A mov Temp2, A mov Temp3, #0 ENDIF ; 10-bit effective dithering of 8/9-bit pwm IF PWM_BITS_H < 2 mov A, Temp4 ; 11-bit low byte cpl A rr A anl A, #((1 SHL (2-PWM_BITS_H))-1); Get index into dithering pattern table add A, #Dithering_Patterns mov Temp1, A ; Reuse DShot pwm pointer since it is not currently in use. mov A, @Temp1 ; Retrieve pattern rl A ; Rotate pattern mov @Temp1, A ; Store pattern jnb ACC.0, dithering_done mov A, Temp2 add A, #1 mov Temp2, A IF PWM_BITS_H != 0 mov A, Temp3 addc A, #0 mov Temp3, A jnb ACC.PWM_BITS_H, dithering_done dec Temp2 dec Temp3 ELSE jnz dithering_done dec Temp2 ENDIF dithering_done: ENDIF ; Set pwm registers IF FETON_DELAY != 0 clr C mov A, Temp2 ; Skew damping fet timing IF MCU_48MHZ == 0 subb A, #((FETON_DELAY+1) SHR 1) ELSE subb A, #(FETON_DELAY) ENDIF mov Temp4, A mov A, Temp3 subb A, #0 mov Temp5, A jnc t1_int_set_pwm_damp_set clr A mov Temp4, A mov Temp5, A t1_int_set_pwm_damp_set: ENDIF mov Power_Pwm_Reg_L, Temp2 mov Power_Pwm_Reg_H, Temp3 IF FETON_DELAY != 0 mov Damp_Pwm_Reg_L, Temp4 mov Damp_Pwm_Reg_H, Temp5 ENDIF mov Rcp_Timeout_Cntd, #10 ; Set timeout count ; Prepare DShot telemetry jnb Flag_RCP_DSHOT_INVERTED, t1_int_exit_no_tlm ; Only send telemetry for inverted DShot jnb Flag_PACKET_PENDING, t1_int_exit_no_tlm ; Check if telemetry packet is ready ; Prepare timer 0 for sending telemetry data ; todo: dshot150 ;mov Temp2, CKCON0 ; Save value to restore later mov CKCON0, #01h ; Timer 0 is system clock divided by 4 mov TMOD, #0A2h ; Timer 0 runs free not gated by INT0 mov TL0, DShot_GCR_Start_Delay ; Telemetry will begin after this delay clr TCON_TF0 ; Clear timer 0 overflow flag setb IE_ET0 ; Enable timer 0 interrupts ; Configure RTX_PIN for digital output setb RTX_PORT.RTX_PIN ; Default to high level orl RTX_MDOUT, #(1 SHL RTX_PIN) ; Set output mode to push-pull mov Temp1, #0 ; Set pointer to start sjmp t1_int_exit_no_int t1_int_exit_no_tlm: mov Temp1, #0 ; Set pointer to start mov TL0, #0 ; Reset timer 0 setb IE_EX0 ; Enable int0 interrupts setb IE_EX1 ; Enable int1 interrupts Enable_PCA_Interrupt ; Enable pca interrupts t1_int_exit_no_int: pop B ; Restore preserved registers pop ACC pop PSW reti ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Timer 2 interrupt routine ; ; Requirements: Temp variables can NOT be used since PSW.x is not set ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** t2_int: ; Happens every 32ms push ACC clr TMR2CN0_TF2H ; Clear interrupt flag inc Timer2_X IF MCU_48MHZ == 1 jnb Flag_CLOCK_SET_AT_48MHZ, t2_int_start ; Check skip variable jbc Flag_SKIP_T2_INT, t2_int_exit ; Skip this interrupt t2_int_start: setb Flag_SKIP_T2_INT ; Skip next interrupt ENDIF ; Update RC pulse timeout counter mov A, Rcp_Timeout_Cntd ; RC pulse timeout count zero? jz ($+4) ; Yes - do not decrement dec Rcp_Timeout_Cntd ; No decrement jnb Flag_RCP_STOP, t2_int_exit ; Exit if pulse is above stop value inc Rcp_Stop_Cnt ; Otherwise, increment stop counter mov A, Rcp_Stop_Cnt jnz ($+4) ; Branch if counter has not wrapped dec Rcp_Stop_Cnt ; Set stop counter to max t2_int_exit: pop ACC ; Restore preserved registers reti ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Timer 3 interrupt routine ; ; Requirements: Temp variables can NOT be used since PSW.x is not set ; ACC can not be used, as it is not pushed to stack ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** t3_int: ; Used for commutation timing clr IE_EA ; Disable all interrupts anl EIE1, #7Fh ; Disable timer 3 interrupts anl TMR3CN0, #07Fh ; Clear timer 3 interrupt flag mov TMR3RLL, #0FAh ; Set a short delay before next interrupt mov TMR3RLH, #0FFh clr Flag_T3_PENDING ; Flag that timer has wrapped setb IE_EA ; Enable all interrupts reti ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Int0 interrupt routine ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** int0_int: ; Used for RC pulse timing push ACC mov A, TL0 ; Read pwm for DShot immediately mov TL1, DShot_Timer_Preset ; Reset sync timer ; Temp1 in register bank 1 points to pwm timings push PSW mov PSW, #8h movx @Temp1, A ; Store pwm inc Temp1 pop PSW pop ACC reti ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Int1 interrupt routine ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** int1_int: ; Used for RC pulse timing clr IE_EX1 ; Disable int1 interrupts setb TCON_TR1 ; Start timer 1 clr TMR2CN0_TR2 ; Timer 2 disabled mov DShot_Frame_Start_L, TMR2L ; Read timer value mov DShot_Frame_Start_H, TMR2H setb TMR2CN0_TR2 ; Timer 2 enabled reti ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; PCA interrupt routine ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** pca_int: ; Used for setting pwm registers clr IE_EA push ACC IF FETON_DELAY != 0 ; HI/LO enable style drivers mov A, PCA0L ; Read low byte first, to transfer high byte to holding register mov A, PCA0H jnb Flag_LOW_PWM_POWER, pca_int_hi_pwm ; Power below 50%, update pca in the 0x00-0x0F range jb ACC.PWM_BITS_H, pca_int_exit ; PWM edge selection bit (continue if up edge) sjmp pca_int_set_pwm pca_int_hi_pwm: ; Power above 50%, update pca in the 0x20-0x2F range jnb ACC.PWM_BITS_H, pca_int_exit ; PWM edge selection bit (continue if down edge) pca_int_set_pwm: IF PWM_BITS_H != 0 jb ACC.(PWM_BITS_H-1), pca_int_exit ELSE mov A, PCA0L jb ACC.7, pca_int_exit ENDIF ENDIF ; Set power pwm auto-reload registers IF PWM_BITS_H != 0 mov PCA0_POWER_L, Power_Pwm_Reg_L mov PCA0_POWER_H, Power_Pwm_Reg_H ELSE mov PCA0_POWER_H, Power_Pwm_Reg_L ENDIF IF FETON_DELAY != 0 ; Set damp pwm auto-reload registers IF PWM_BITS_H != 0 mov PCA0_DAMP_L, Damp_Pwm_Reg_L mov PCA0_DAMP_H, Damp_Pwm_Reg_H ELSE mov PCA0_DAMP_H, Damp_Pwm_Reg_L ENDIF ENDIF setb Flag_LOW_PWM_POWER IF PWM_BITS_H != 0 mov A, Power_Pwm_Reg_H jb ACC.(PWM_BITS_H-1), ($+5) ELSE mov A, Power_Pwm_Reg_L jb ACC.7, ($+5) ENDIF clr Flag_LOW_PWM_POWER Disable_COVF_Interrupt IF FETON_DELAY == 0 ; EN/PWM style drivers Disable_CCF_Interrupt ENDIF anl EIE1, #0EFh ; Pwm updated, disable pca interrupts pca_int_exit: Clear_COVF_Interrupt IF FETON_DELAY == 0 Clear_CCF_Interrupt ENDIF pop ACC ; Restore preserved registers setb IE_EA reti ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; DShot GCR encode ; ; GCR encode e-period data for DShot telemetry ; ; Input ; - Temp1: Data pointer for storing pulse timings ; - A: 4-bit value to GCR encode ; - B: Time that must be added to transition ; Output ; - B: Time remaining to be added to next transition ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** dshot_gcr_encode: anl A, #0Fh rl A ; Multiply by 2 to match jump offsets mov DPTR, #dshot_gcr_encode_jump_table jmp @A+DPTR dshot_gcr_encode_jump_table: ajmp dshot_gcr_encode_0_11001 ajmp dshot_gcr_encode_1_11011 ajmp dshot_gcr_encode_2_10010 ajmp dshot_gcr_encode_3_10011 ajmp dshot_gcr_encode_4_11101 ajmp dshot_gcr_encode_5_10101 ajmp dshot_gcr_encode_6_10110 ajmp dshot_gcr_encode_7_10111 ajmp dshot_gcr_encode_8_11010 ajmp dshot_gcr_encode_9_01001 ajmp dshot_gcr_encode_A_01010 ajmp dshot_gcr_encode_B_01011 ajmp dshot_gcr_encode_C_11110 ajmp dshot_gcr_encode_D_01101 ajmp dshot_gcr_encode_E_01110 ajmp dshot_gcr_encode_F_01111 ; GCR encoding is ordered by least significant bit first, ; and represented as pulse durations. dshot_gcr_encode_0_11001: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_3 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_1_11011: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_2 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_2_10010: DShot_GCR_Get_Time Push_Mem Temp1, A Push_Mem Temp1, DShot_GCR_Pulse_Time_3 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_3_10011: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_3 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_4_11101: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_2 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_5_10101: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_2 Push_Mem Temp1, DShot_GCR_Pulse_Time_2 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_6_10110: DShot_GCR_Get_Time Push_Mem Temp1, A Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_2 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_7_10111: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_2 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_8_11010: DShot_GCR_Get_Time Push_Mem Temp1, A Push_Mem Temp1, DShot_GCR_Pulse_Time_2 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_9_01001: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_3 mov Tmp_B, DShot_GCR_Pulse_Time_2 ret dshot_gcr_encode_A_01010: DShot_GCR_Get_Time Push_Mem Temp1, A Push_Mem Temp1, DShot_GCR_Pulse_Time_2 mov Tmp_B, DShot_GCR_Pulse_Time_2 ret dshot_gcr_encode_B_01011: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_2 mov Tmp_B, DShot_GCR_Pulse_Time_2 ret dshot_gcr_encode_C_11110: DShot_GCR_Get_Time Push_Mem Temp1, A Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 mov Tmp_B, DShot_GCR_Pulse_Time_1 ret dshot_gcr_encode_D_01101: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_2 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 mov Tmp_B, DShot_GCR_Pulse_Time_2 ret dshot_gcr_encode_E_01110: DShot_GCR_Get_Time Push_Mem Temp1, A Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 mov Tmp_B, DShot_GCR_Pulse_Time_2 ret dshot_gcr_encode_F_01111: Push_Mem Temp1, Tmp_B Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 Push_Mem Temp1, DShot_GCR_Pulse_Time_1 mov Tmp_B, DShot_GCR_Pulse_Time_2 ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; DShot 12-bit encode ; ; Encodes 16-bit e-period as a 12-bit value of the form: ; where M SHL E ~ e-period [us] ; ; Note: Not callable to improve performance ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** dshot_12bit_7: ;mov A, Tlm_Data_H mov C, Tlm_Data_L.7 rlc A mov Tlm_Data_L, A mov Tlm_Data_H, #0fh ajmp dshot_tlm_12bit_encoded dshot_12bit_6: ;mov A, Tlm_Data_H mov C, Tlm_Data_L.7 rlc A mov C, Tlm_Data_L.6 rlc A mov Tlm_Data_L, A mov Tlm_Data_H, #0dh ajmp dshot_tlm_12bit_encoded dshot_12bit_5: ;mov A, Tlm_Data_H mov C, Tlm_Data_L.7 rlc A mov C, Tlm_Data_L.6 rlc A mov C, Tlm_Data_L.5 rlc A mov Tlm_Data_L, A mov Tlm_Data_H, #0bh ajmp dshot_tlm_12bit_encoded dshot_12bit_4: mov A, Tlm_Data_L anl A, #0f0h clr Tlm_Data_H.4 orl A, Tlm_Data_H swap A mov Tlm_Data_L, A mov Tlm_Data_H, #09h ajmp dshot_tlm_12bit_encoded dshot_12bit_3: mov A, Tlm_Data_L mov C, Tlm_Data_H.0 rrc A mov C, Tlm_Data_H.1 rrc A mov C, Tlm_Data_H.2 rrc A mov Tlm_Data_L, A mov Tlm_Data_H, #07h ajmp dshot_tlm_12bit_encoded dshot_12bit_2: mov A, Tlm_Data_L mov C, Tlm_Data_H.0 rrc A mov C, Tlm_Data_H.1 rrc A mov Tlm_Data_L, A mov Tlm_Data_H, #05h ajmp dshot_tlm_12bit_encoded dshot_12bit_1: mov A, Tlm_Data_L mov C, Tlm_Data_H.0 rrc A mov Tlm_Data_L, A mov Tlm_Data_H, #03h ajmp dshot_tlm_12bit_encoded dshot_12bit_encode: ; Encode 16-bit e-period as a 12-bit value jb ACC.7, dshot_12bit_7 ; ACC = Tlm_Data_H jb ACC.6, dshot_12bit_6 jb ACC.5, dshot_12bit_5 jb ACC.4, dshot_12bit_4 jb ACC.3, dshot_12bit_3 jb ACC.2, dshot_12bit_2 jb ACC.1, dshot_12bit_1 mov A, Tlm_Data_L ; Already 12-bit (E=0) ajmp dshot_tlm_12bit_encoded ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; DShot telemetry create packet ; ; Create DShot telemetry packet and prepare it for being sent ; The routine is divided into 6 sections that can return early ; in order to reduce commutation interference ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** dshot_tlm_create_packet: push PSW mov PSW, #10h ; Select register bank 2 Early_Return_Packet_Stage 0 ; Read commutation period clr IE_EA mov Tlm_Data_L, Comm_Period4x_L mov Tlm_Data_H, Comm_Period4x_H setb IE_EA ; Multiply period by 3/4 (1/2 + 1/4) mov A, Tlm_Data_L mov C, Tlm_Data_H.0 rrc A mov Temp2, A mov C, Tlm_Data_H.1 rrc A add A, Temp2 mov Tlm_Data_L, A mov A, Tlm_Data_H rr A clr ACC.7 mov Temp2, A rr A clr ACC.7 addc A, Temp2 mov Tlm_Data_H, A Early_Return_Packet_Stage 1 mov A, Tlm_Data_H ; 12-bit encode telemetry data jnz dshot_12bit_encode mov A, Tlm_Data_L ; Already 12-bit jnz dshot_tlm_12bit_encoded ; If period is zero then reset to FFFFh (FFFh for 12-bit) mov Tlm_Data_H, #0Fh mov Tlm_Data_L, #0FFh dshot_tlm_12bit_encoded: Early_Return_Packet_Stage 2 mov A, Tlm_Data_L ; Compute inverted xor checksum (4-bit) swap A xrl A, Tlm_Data_L xrl A, Tlm_Data_H cpl A ; GCR encode the telemetry data (16-bit) mov Temp1, #Temp_Storage ; Store pulse timings in Temp_Storage mov Tmp_B, DShot_GCR_Pulse_Time_1 ; Final transition time call dshot_gcr_encode ; GCR encode lowest 4-bit of A (store through Temp1) Early_Return_Packet_Stage 3 mov A, Tlm_Data_L call dshot_gcr_encode Early_Return_Packet_Stage 4 mov A, Tlm_Data_L swap A call dshot_gcr_encode Early_Return_Packet_Stage 5 mov A, Tlm_Data_H call dshot_gcr_encode Push_Mem Temp1, Tmp_B ; Initial transition time mov Temp5, #0 setb Flag_PACKET_PENDING pop PSW ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Wait a number of milliseconds (Multiple entry points) ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** wait1ms: mov Temp2, #1 sjmp waitxms_o wait10ms: mov Temp2, #10 sjmp waitxms_o wait100ms: mov Temp2, #100 sjmp waitxms_o wait200ms: mov Temp2, #200 sjmp waitxms_o waitxms_o: ; Outer loop mov Temp1, #23 waitxms_m: ; Middle loop clr A djnz ACC, $ ; Inner loop (41.8us - 1024 cycles) djnz Temp1, waitxms_m djnz Temp2, waitxms_o ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Set pwm limit low rpm ; ; Sets power limit for low rpms and disables demag for low rpms ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** set_pwm_limit: jb Flag_HIGH_RPM, set_pwm_limit_high_rpm ; If high rpm, limit pwm by rpm instead ;set_pwm_limit_low_rpm: ; Set pwm limit mov Temp1, #0FFh ; Default full power jb Flag_STARTUP_PHASE, set_pwm_limit_low_rpm_exit ; Exit if startup phase set mov Temp2, #Pgm_Enable_Power_Prot ; Check if low RPM power protection is enabled mov A, @Temp2 jz set_pwm_limit_low_rpm_exit ; Exit if disabled mov A, Comm_Period4x_H jz set_pwm_limit_low_rpm_exit ; Avoid divide by zero mov A, #255 ; Divide 255 by Comm_Period4x_H mov B, Comm_Period4x_H div AB mov B, Low_Rpm_Pwr_Slope ; Multiply by slope jnb Flag_INITIAL_RUN_PHASE, ($+6) ; More protection for initial run phase mov B, #5 mul AB mov Temp1, A ; Set new limit xch A, B jz ($+4) ; Limit to max mov Temp1, #0FFh clr C mov A, Temp1 ; Limit to min subb A, Pwm_Limit_Beg jnc set_pwm_limit_low_rpm_exit mov Temp1, Pwm_Limit_Beg set_pwm_limit_low_rpm_exit: mov Pwm_Limit_By_Rpm, Temp1 ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Set pwm limit high rpm ; ; Sets power limit for high rpms ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** set_pwm_limit_high_rpm: clr C mov A, Comm_Period4x_L IF MCU_48MHZ == 1 subb A, #0A0h ; Limit Comm_Period to 160, which is 500k erpm ELSE subb A, #0E4h ; Limit Comm_Period to 228, which is 350k erpm ENDIF mov A, Comm_Period4x_H subb A, #00h mov A, Pwm_Limit_By_Rpm jnc set_pwm_limit_high_rpm_inc_limit dec A sjmp set_pwm_limit_high_rpm_store set_pwm_limit_high_rpm_inc_limit: inc A set_pwm_limit_high_rpm_store: jz ($+4) mov Pwm_Limit_By_Rpm, A ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Check temperature, power supply voltage and limit power ; ; Used to limit main motor power in order to maintain the required voltage ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** check_temp_voltage_and_limit_power: inc Adc_Conversion_Cnt ; Increment conversion counter clr C mov A, Adc_Conversion_Cnt ; Is conversion count equal to temp rate? subb A, #8 jc check_voltage_start ; No - check voltage ; Wait for ADC conversion to complete jnb ADC0CN0_ADINT, check_temp_voltage_and_limit_power ; Read ADC result Read_Adc_Result ; Stop ADC Stop_Adc mov Adc_Conversion_Cnt, #0 ; Yes - temperature check. Reset counter mov A, Temp2 ; Move ADC MSB to Temp3 mov Temp3, A mov Temp2, #Pgm_Enable_Temp_Prot ; Is temp protection enabled? mov A, @Temp2 jz temp_check_exit ; No - branch mov A, Temp3 ; Is temperature reading below 256? jnz temp_average_inc_dec ; No - proceed mov A, Current_Average_Temp ; Yes - decrement average jz temp_average_updated ; Already zero - no change sjmp temp_average_dec ; Decrement temp_average_inc_dec: clr C mov A, Temp1 ; Check if current temperature is above or below average subb A, Current_Average_Temp jz temp_average_updated_load_acc ; Equal - no change mov A, Current_Average_Temp ; Above - increment average jnc temp_average_inc jz temp_average_updated ; Below - decrement average if average is not already zero temp_average_dec: dec A ; Decrement average sjmp temp_average_updated temp_average_inc: inc A ; Increment average jz temp_average_dec sjmp temp_average_updated temp_average_updated_load_acc: mov A, Current_Average_Temp temp_average_updated: mov Current_Average_Temp, A clr C subb A, Temp_Prot_Limit ; Is temperature below first limit? jc temp_check_exit ; Yes - exit mov Pwm_Limit, #192 ; No - limit pwm clr C subb A, #(TEMP_LIMIT_STEP/2) ; Is temperature below second limit jc temp_check_exit ; Yes - exit mov Pwm_Limit, #128 ; No - limit pwm clr C subb A, #(TEMP_LIMIT_STEP/2) ; Is temperature below third limit jc temp_check_exit ; Yes - exit mov Pwm_Limit, #64 ; No - limit pwm clr C subb A, #(TEMP_LIMIT_STEP/2) ; Is temperature below final limit jc temp_check_exit ; Yes - exit mov Pwm_Limit, #0 ; No - limit pwm temp_check_exit: ret check_voltage_start: ; Increase pwm limit mov A, Pwm_Limit add A, #16 jnc ($+4) ; If not max - branch mov A, #255 mov Pwm_Limit, A ; Increment limit ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Initialize timing routine ; ; Part of initialization before motor start ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** initialize_timing: mov Comm_Period4x_L, #00h ; Set commutation period registers mov Comm_Period4x_H, #0F0h ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Calculate next commutation timing routine ; ; Called immediately after each commutation ; Also sets up timer 3 to wait advance timing ; Two entry points are used ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** calc_next_comm_timing: ; Entry point for run phase ; Read commutation time clr IE_EA clr TMR2CN0_TR2 ; Timer 2 disabled mov Temp1, TMR2L ; Load timer value mov Temp2, TMR2H mov Temp3, Timer2_X jnb TMR2CN0_TF2H, ($+4) ; Check if interrupt is pending inc Temp3 ; If it is pending, then timer has already wrapped setb TMR2CN0_TR2 ; Timer 2 enabled setb IE_EA IF MCU_48MHZ == 1 clr C mov A, Temp3 rrc A mov Temp3, A mov A, Temp2 rrc A mov Temp2, A mov A, Temp1 rrc A mov Temp1, A ENDIF ; Calculate this commutation time mov Temp4, Prev_Comm_L mov Temp5, Prev_Comm_H mov Prev_Comm_L, Temp1 ; Store timestamp as previous commutation mov Prev_Comm_H, Temp2 clr C mov A, Temp1 subb A, Temp4 ; Calculate the new commutation time mov Temp1, A mov A, Temp2 subb A, Temp5 jb Flag_STARTUP_PHASE, calc_next_comm_startup IF MCU_48MHZ == 1 anl A, #7Fh ENDIF mov Temp2, A jnb Flag_HIGH_RPM, calc_next_comm_normal ; Branch normal rpm ajmp calc_next_comm_timing_fast ; Branch high rpm calc_next_comm_startup: mov Temp6, Prev_Comm_X mov Prev_Comm_X, Temp3 ; Store extended timestamp as previous commutation mov Temp2, A mov A, Temp3 subb A, Temp6 ; Calculate the new extended commutation time IF MCU_48MHZ == 1 anl A, #7Fh ENDIF mov Temp3, A jz calc_next_comm_startup_no_X mov Temp1, #0FFh mov Temp2, #0FFh sjmp calc_next_comm_startup_average calc_next_comm_startup_no_X: mov Temp7, Prev_Prev_Comm_L mov Temp8, Prev_Prev_Comm_H mov Prev_Prev_Comm_L, Temp4 mov Prev_Prev_Comm_H, Temp5 mov Temp1, Prev_Comm_L ; Reload this commutation time mov Temp2, Prev_Comm_H clr C mov A, Temp1 subb A, Temp7 ; Calculate the new commutation time based upon the two last commutations (to reduce sensitivity to offset) mov Temp1, A mov A, Temp2 subb A, Temp8 mov Temp2, A calc_next_comm_startup_average: clr C mov A, Comm_Period4x_H ; Average with previous and save rrc A mov Temp4, A mov A, Comm_Period4x_L rrc A mov Temp3, A mov A, Temp1 add A, Temp3 mov Comm_Period4x_L, A mov A, Temp2 addc A, Temp4 mov Comm_Period4x_H, A jnc ($+8) mov Comm_Period4x_L, #0FFh mov Comm_Period4x_H, #0FFh sjmp calc_new_wait_times_setup calc_next_comm_normal: ; Calculate new commutation time mov Temp3, Comm_Period4x_L ; Comm_Period4x(-l-h) holds the time of 4 commutations mov Temp4, Comm_Period4x_H mov Temp5, Comm_Period4x_L ; Copy variables mov Temp6, Comm_Period4x_H mov Temp7, #4 ; Divide Comm_Period4x 4 times as default mov Temp8, #2 ; Divide new commutation time 2 times as default clr C mov A, Temp4 subb A, #04h jc calc_next_comm_avg_period_div dec Temp7 ; Reduce averaging time constant for low speeds dec Temp8 clr C mov A, Temp4 subb A, #08h jc calc_next_comm_avg_period_div jb Flag_INITIAL_RUN_PHASE, calc_next_comm_avg_period_div ; Do not average very fast during initial run dec Temp7 ; Reduce averaging time constant more for even lower speeds dec Temp8 calc_next_comm_avg_period_div: clr C mov A, Temp6 rrc A ; Divide by 2 mov Temp6, A mov A, Temp5 rrc A mov Temp5, A djnz Temp7, calc_next_comm_avg_period_div clr C mov A, Temp3 subb A, Temp5 ; Subtract a fraction mov Temp3, A mov A, Temp4 subb A, Temp6 mov Temp4, A mov A, Temp8 ; Divide new time jz calc_next_comm_new_period_div_done calc_next_comm_new_period_div: clr C mov A, Temp2 rrc A ; Divide by 2 mov Temp2, A mov A, Temp1 rrc A mov Temp1, A djnz Temp8, calc_next_comm_new_period_div calc_next_comm_new_period_div_done: mov A, Temp3 add A, Temp1 ; Add the divided new time mov Temp3, A mov A, Temp4 addc A, Temp2 mov Temp4, A mov Comm_Period4x_L, Temp3 ; Store Comm_Period4x_X mov Comm_Period4x_H, Temp4 jnc calc_new_wait_times_setup; If period larger than 0xffff - go to slow case mov Temp4, #0FFh mov Comm_Period4x_L, Temp4 ; Set commutation period registers to very slow timing (0xffff) mov Comm_Period4x_H, Temp4 calc_new_wait_times_setup: ; Set high rpm bit (if above 156k erpm) clr C mov A, Temp4 subb A, #2 jnc ($+4) setb Flag_HIGH_RPM ; Set high rpm bit ; Load programmed commutation timing jnb Flag_STARTUP_PHASE, calc_new_wait_per_startup_done ; Set dedicated timing during startup mov Temp8, #3 sjmp calc_new_wait_per_demag_done calc_new_wait_per_startup_done: mov Temp1, #Pgm_Comm_Timing ; Load timing setting mov A, @Temp1 mov Temp8, A ; Store in Temp8 clr C mov A, Demag_Detected_Metric ; Check demag metric subb A, #130 jc calc_new_wait_per_demag_done inc Temp8 ; Increase timing clr C mov A, Demag_Detected_Metric subb A, #160 jc ($+3) inc Temp8 ; Increase timing again clr C mov A, Temp8 ; Limit timing to max subb A, #6 jc ($+4) mov Temp8, #5 ; Set timing to max calc_new_wait_per_demag_done: ; Set timing reduction mov Temp7, #2 ; Load current commutation timing mov A, Comm_Period4x_H ; Divide 4 times swap A anl A, #00Fh mov Temp2, A mov A, Comm_Period4x_H swap A anl A, #0F0h mov Temp1, A mov A, Comm_Period4x_L swap A anl A, #00Fh add A, Temp1 mov Temp1, A clr C mov A, Temp1 subb A, Temp7 mov Temp3, A mov A, Temp2 subb A, #0 mov Temp4, A jc load_min_time ; Check that result is still positive jnz calc_new_wait_times_exit ; Check that result is still above minimum mov A, Temp3 jnz calc_new_wait_times_exit load_min_time: mov Temp3, #1 mov Temp4, #0 calc_new_wait_times_exit: sjmp wait_advance_timing ; Fast calculation (Comm_Period4x_H less than 2) calc_next_comm_timing_fast: ; Calculate new commutation time mov Temp3, Comm_Period4x_L ; Comm_Period4x(-l-h) holds the time of 4 commutations mov Temp4, Comm_Period4x_H mov A, Temp4 ; Divide by 2 4 times swap A mov Temp7, A mov A, Temp3 swap A anl A, #0Fh orl A, Temp7 mov Temp5, A clr C mov A, Temp3 ; Subtract a fraction subb A, Temp5 mov Temp3, A mov A, Temp4 subb A, #0 mov Temp4, A clr C mov A, Temp1 rrc A ; Divide by 2 2 times clr C rrc A mov Temp1, A mov A, Temp3 ; Add the divided new time add A, Temp1 mov Temp3, A mov A, Temp4 addc A, #0 mov Temp4, A mov Comm_Period4x_L, Temp3 ; Store Comm_Period4x_X mov Comm_Period4x_H, Temp4 clr C subb A, #2 ; If erpm below 156k - go to normal case jc ($+4) clr Flag_HIGH_RPM ; Clear high rpm bit ; Set timing reduction mov Temp1, #2 mov A, Temp4 ; Divide by 2 4 times swap A mov Temp7, A mov Temp4, #0 mov A, Temp3 swap A anl A, #0Fh orl A, Temp7 mov Temp3, A clr C subb A, Temp1 mov Temp3, A jc load_min_time_fast ; Check that result is still positive jnz calc_new_wait_times_fast_done ; Check that result is still above minimum load_min_time_fast: mov Temp3, #1 calc_new_wait_times_fast_done: mov Temp1, #Pgm_Comm_Timing ; Load timing setting mov A, @Temp1 mov Temp8, A ; Store in Temp8 ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Wait advance timing routine ; NOTE: Be VERY careful if using temp registers. They are passed over this routine ; ; Waits for the advance timing to elapse and sets up the next zero cross wait ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** wait_advance_timing: Wait_For_Timer3 ; Setup next wait time mov TMR3RLL, Wt_ZC_Tout_Start_L mov TMR3RLH, Wt_ZC_Tout_Start_H setb Flag_T3_PENDING orl EIE1, #80h ; Enable timer 3 interrupts ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Calculate new wait times routine ; ; Calculates new wait times ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** calc_new_wait_times: clr C clr A subb A, Temp3 ; Negate mov Temp1, A clr A subb A, Temp4 mov Temp2, A IF MCU_48MHZ == 1 clr C mov A, Temp1 ; Multiply by 2 rlc A mov Temp1, A mov A, Temp2 rlc A mov Temp2, A ENDIF jb Flag_HIGH_RPM, calc_new_wait_times_fast ; Branch if high rpm mov A, Temp1 ; Copy values mov Temp3, A mov A, Temp2 mov Temp4, A setb C ; Negative numbers - set carry mov A, Temp2 rrc A ; Divide by 2 mov Temp6, A mov A, Temp1 rrc A mov Temp5, A mov Wt_Zc_Tout_Start_L, Temp1 ; Set 15deg time for zero cross scan timeout mov Wt_Zc_Tout_Start_H, Temp2 clr C mov A, Temp8 ; (Temp8 has Pgm_Comm_Timing) subb A, #3 ; Is timing normal? jz store_times_decrease ; Yes - branch mov A, Temp8 jb ACC.0, adjust_timing_two_steps; If an odd number - branch mov A, Temp1 ; Add 7.5deg and store in Temp1/2 add A, Temp5 mov Temp1, A mov A, Temp2 addc A, Temp6 mov Temp2, A mov A, Temp5 ; Store 7.5deg in Temp3/4 mov Temp3, A mov A, Temp6 mov Temp4, A sjmp store_times_up_or_down adjust_timing_two_steps: mov A, Temp1 ; Add 15deg and store in Temp1/2 setb C ; Add 1 to final result (Temp1/2 * 2 + 1) addc A, Temp1 mov Temp1, A mov A, Temp2 addc A, Temp2 mov Temp2, A mov Temp3, #0FFh ; Store minimum time in Temp3/4 mov Temp4, #0FFh store_times_up_or_down: clr C mov A, Temp8 subb A, #3 ; Is timing higher than normal? jc store_times_decrease ; No - branch store_times_increase: mov Wt_Comm_Start_L, Temp3 ; Now commutation time (~60deg) divided by 4 (~15deg nominal) mov Wt_Comm_Start_H, Temp4 mov Wt_Adv_Start_L, Temp1 ; New commutation advance time (~15deg nominal) mov Wt_Adv_Start_H, Temp2 mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg) mov Wt_Zc_Scan_Start_H, Temp6 sjmp wait_before_zc_scan store_times_decrease: mov Wt_Comm_Start_L, Temp1 ; Now commutation time (~60deg) divided by 4 (~15deg nominal) mov Wt_Comm_Start_H, Temp2 mov Wt_Adv_Start_L, Temp3 ; New commutation advance time (~15deg nominal) mov Wt_Adv_Start_H, Temp4 mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg) mov Wt_Zc_Scan_Start_H, Temp6 jnb Flag_STARTUP_PHASE, store_times_exit ; Set very short delays for all but advance time during startup, in order to widen zero cross capture range mov Wt_Comm_Start_L, #0F0h mov Wt_Comm_Start_H, #0FFh mov Wt_Zc_Scan_Start_L, #0F0h mov Wt_Zc_Scan_Start_H, #0FFh mov Wt_Zc_Tout_Start_L, #0F0h mov Wt_Zc_Tout_Start_H, #0FFh store_times_exit: sjmp wait_before_zc_scan calc_new_wait_times_fast: mov A, Temp1 ; Copy values mov Temp3, A setb C ; Negative numbers - set carry rrc A ; Divide by 2 mov Temp5, A mov Wt_Zc_Tout_Start_L, Temp1 ; Set 15deg time for zero cross scan timeout clr C mov A, Temp8 ; (Temp8 has Pgm_Comm_Timing) subb A, #3 ; Is timing normal? jz store_times_decrease_fast ; Yes - branch mov A, Temp8 jb ACC.0, adjust_timing_two_steps_fast ; If an odd number - branch mov A, Temp1 ; Add 7.5deg and store in Temp1 add A, Temp5 mov Temp1, A mov A, Temp5 ; Store 7.5deg in Temp3 mov Temp3, A sjmp store_times_up_or_down_fast adjust_timing_two_steps_fast: mov A, Temp1 ; Add 15deg and store in Temp1 add A, Temp1 add A, #1 mov Temp1, A mov Temp3, #0FFh ; Store minimum time in Temp3 store_times_up_or_down_fast: clr C mov A, Temp8 subb A, #3 ; Is timing higher than normal? jc store_times_decrease_fast ; No - branch store_times_increase_fast: mov Wt_Comm_Start_L, Temp3 ; Now commutation time (~60deg) divided by 4 (~15deg nominal) mov Wt_Adv_Start_L, Temp1 ; New commutation advance time (~15deg nominal) mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg) sjmp wait_before_zc_scan store_times_decrease_fast: mov Wt_Comm_Start_L, Temp1 ; Now commutation time (~60deg) divided by 4 (~15deg nominal) mov Wt_Adv_Start_L, Temp3 ; New commutation advance time (~15deg nominal) mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg) ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Wait before zero cross scan routine ; ; Waits for the zero cross scan wait time to elapse ; Also sets up timer 3 for the zero cross scan timeout time ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** wait_before_zc_scan: Wait_For_Timer3 mov Startup_Zc_Timeout_Cntd, #2 setup_zc_scan_timeout: setb Flag_T3_PENDING orl EIE1, #80h ; Enable timer 3 interrupts mov A, Flags_Startup jz wait_before_zc_scan_exit mov Temp1, Comm_Period4x_L ; Set long timeout when starting mov Temp2, Comm_Period4x_H clr C mov A, Temp2 rrc A mov Temp2, A mov A, Temp1 rrc A mov Temp1, A IF MCU_48MHZ == 0 clr C mov A, Temp2 rrc A mov Temp2, A mov A, Temp1 rrc A mov Temp1, A ENDIF jnb Flag_STARTUP_PHASE, setup_zc_scan_timeout_startup_done mov A, Temp2 add A, #40h ; Increase timeout somewhat to avoid false wind up mov Temp2, A setup_zc_scan_timeout_startup_done: clr IE_EA anl EIE1, #7Fh ; Disable timer 3 interrupts mov TMR3CN0, #00h ; Timer 3 disabled and interrupt flag cleared clr C clr A subb A, Temp1 ; Set timeout mov TMR3L, A clr A subb A, Temp2 mov TMR3H, A mov TMR3CN0, #04h ; Timer 3 enabled and interrupt flag cleared setb Flag_T3_PENDING orl EIE1, #80h ; Enable timer 3 interrupts setb IE_EA wait_before_zc_scan_exit: ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Wait for comparator to go low/high routines ; ; Waits for the zero cross scan wait time to elapse ; Then scans for comparator going low/high ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** wait_for_comp_out_low: setb Flag_DEMAG_DETECTED ; Set demag detected flag as default mov Comparator_Read_Cnt, #0 ; Reset number of comparator reads mov Bit_Access, #00h ; Desired comparator output jnb Flag_DIR_CHANGE_BRAKE, ($+6) mov Bit_Access, #40h sjmp wait_for_comp_out_start wait_for_comp_out_high: setb Flag_DEMAG_DETECTED ; Set demag detected flag as default mov Comparator_Read_Cnt, #0 ; Reset number of comparator reads mov Bit_Access, #40h ; Desired comparator output jnb Flag_DIR_CHANGE_BRAKE, ($+6) mov Bit_Access, #00h wait_for_comp_out_start: ; Set number of comparator readings mov Temp1, #1 ; Number of OK readings required mov Temp2, #1 ; Max number of readings required jb Flag_HIGH_RPM, comp_scale_samples ; Branch if high rpm mov A, Flags_Startup ; Clear demag detected flag if start phases jz ($+4) clr Flag_DEMAG_DETECTED ; Too low value (~<15) causes rough running at pwm harmonics. ; Too high a value (~>35) causes the RCT4215 630 to run rough on full throttle mov Temp2, #20 mov A, Comm_Period4x_H ; Set number of readings higher for lower speeds clr C rrc A jnz ($+3) inc A mov Temp1, A clr C subb A, #20 jc ($+4) mov Temp1, #20 jnb Flag_STARTUP_PHASE, comp_scale_samples mov Temp1, #27 ; Set many samples during startup, approximately one pwm period mov Temp2, #27 comp_scale_samples: IF MCU_48MHZ == 1 clr C mov A, Temp1 rlc A mov Temp1, A clr C mov A, Temp2 rlc A mov Temp2, A ENDIF comp_check_timeout: jb Flag_T3_PENDING, comp_check_timeout_not_timed_out ; Has zero cross scan timeout elapsed? mov A, Comparator_Read_Cnt ; Check that comparator has been read jz comp_check_timeout_not_timed_out ; If not read - branch jnb Flag_STARTUP_PHASE, comp_check_timeout_timeout_extended ; Extend timeout during startup djnz Startup_Zc_Timeout_Cntd, comp_check_timeout_extend_timeout comp_check_timeout_timeout_extended: setb Flag_COMP_TIMED_OUT sjmp setup_comm_wait comp_check_timeout_extend_timeout: call setup_zc_scan_timeout comp_check_timeout_not_timed_out: inc Comparator_Read_Cnt ; Increment comparator read count Read_Comp_Out ; Read comparator output anl A, #40h cjne A, Bit_Access, comp_read_wrong ; Comp read ok mov A, Startup_Cnt ; Force a timeout for the first commutation jz wait_for_comp_out_start jb Flag_DEMAG_DETECTED, wait_for_comp_out_start ; Do not accept correct comparator output if it is demag djnz Temp1, comp_check_timeout ; Decrement readings counter - repeat comparator reading if not zero clr Flag_COMP_TIMED_OUT sjmp setup_comm_wait comp_read_wrong: jnb Flag_STARTUP_PHASE, comp_read_wrong_not_startup inc Temp1 ; Increment number of OK readings required clr C mov A, Temp1 subb A, Temp2 ; If above initial requirement - do not increment further jc ($+3) dec Temp1 sjmp comp_check_timeout ; Continue to look for good ones comp_read_wrong_not_startup: jb Flag_DEMAG_DETECTED, comp_read_wrong_extend_timeout inc Temp1 ; Increment number of OK readings required clr C mov A, Temp1 subb A, Temp2 jc comp_check_timeout ; If below initial requirement - take another reading sjmp wait_for_comp_out_start ; Otherwise - go back and restart comp_read_wrong_extend_timeout: clr Flag_DEMAG_DETECTED ; Clear demag detected flag anl EIE1, #7Fh ; Disable timer 3 interrupts mov TMR3CN0, #00h ; Timer 3 disabled and interrupt flag cleared jnb Flag_HIGH_RPM, comp_read_wrong_low_rpm ; Branch if not high rpm mov TMR3L, #00h ; Set timeout to ~1ms IF MCU_48MHZ == 1 mov TMR3H, #0F0h ELSE mov TMR3H, #0F8h ENDIF comp_read_wrong_timeout_set: mov TMR3CN0, #04h ; Timer 3 enabled and interrupt flag cleared setb Flag_T3_PENDING orl EIE1, #80h ; Enable timer 3 interrupts ajmp wait_for_comp_out_start ; If comparator output is not correct - go back and restart comp_read_wrong_low_rpm: mov A, Comm_Period4x_H ; Set timeout to ~4x comm period 4x value mov Temp7, #0FFh ; Default to long IF MCU_48MHZ == 1 clr C rlc A jc comp_read_wrong_load_timeout ENDIF clr C rlc A jc comp_read_wrong_load_timeout clr C rlc A jc comp_read_wrong_load_timeout mov Temp7, A comp_read_wrong_load_timeout: clr C clr A subb A, Temp7 mov TMR3L, #0 mov TMR3H, A sjmp comp_read_wrong_timeout_set ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Setup commutation timing routine ; ; Sets up and starts wait from commutation to zero cross ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** setup_comm_wait: clr IE_EA anl EIE1, #7Fh ; Disable timer 3 interrupts mov TMR3CN0, #00h ; Timer 3 disabled and interrupt flag cleared mov TMR3L, Wt_Comm_Start_L mov TMR3H, Wt_Comm_Start_H mov TMR3CN0, #04h ; Timer 3 enabled and interrupt flag cleared ; Setup next wait time mov TMR3RLL, Wt_Adv_Start_L mov TMR3RLH, Wt_Adv_Start_H setb Flag_T3_PENDING orl EIE1, #80h ; Enable timer 3 interrupts setb IE_EA ; Enable interrupts again ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Evaluate comparator integrity ; ; Checks comparator signal behavior versus expected behavior ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** evaluate_comparator_integrity: mov A, Flags_Startup jz eval_comp_check_timeout jb Flag_INITIAL_RUN_PHASE, ($+5) ; Do not increment beyond startup phase inc Startup_Cnt ; Increment counter sjmp eval_comp_exit eval_comp_check_timeout: jnb Flag_COMP_TIMED_OUT, eval_comp_exit ; Has timeout elapsed? jb Flag_DIR_CHANGE_BRAKE, eval_comp_exit ; Do not exit run mode if it is braking jb Flag_DEMAG_DETECTED, eval_comp_exit ; Do not exit run mode if it is a demag situation dec SP ; Routine exit without "ret" command dec SP ljmp run_to_wait_for_power_on_fail ; Yes - exit run mode eval_comp_exit: ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Wait for commutation routine ; ; Waits from zero cross to commutation ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** wait_for_comm: ; Update demag metric mov A, Demag_Detected_Metric ; Sliding average of 8, 256 when demag and 0 when not. Limited to minimum 120 mov B, #7 mul AB ; Multiply by 7 jnb Flag_DEMAG_DETECTED, ($+4) ; Add new value for current demag status inc B mov C, B.0 ; Divide by 8 rrc A mov C, B.1 rrc A mov C, B.2 rrc A mov Demag_Detected_Metric, A clr C subb A, #120 ; Limit to minimum 120 jnc ($+5) mov Demag_Detected_Metric, #120 clr C mov A, Demag_Detected_Metric ; Check demag metric subb A, Demag_Pwr_Off_Thresh jc wait_for_comm_wait ; Cut power if many consecutive demags. This will help retain sync during hard accelerations All_pwmFETs_off Set_Pwms_Off wait_for_comm_wait: Wait_For_Timer3 ; Setup next wait time mov TMR3RLL, Wt_Zc_Scan_Start_L mov TMR3RLH, Wt_Zc_Scan_Start_H setb Flag_T3_PENDING orl EIE1, #80h ; Enable timer 3 interrupts ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Commutation routines ; ; Performs commutation switching ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; Comm phase 1 to comm phase 2 comm1comm2: Set_RPM_Out jb Flag_PGM_DIR_REV, comm12_rev clr IE_EA ; Disable all interrupts BcomFET_off ; Turn off comfet AcomFET_on ; Turn on comfet Set_Pwm_C ; To reapply power after a demag cut setb IE_EA Set_Comp_Phase_B ; Set comparator phase ret comm12_rev: clr IE_EA ; Disable all interrupts BcomFET_off ; Turn off comfet CcomFET_on ; Turn on comfet (reverse) Set_Pwm_A ; To reapply power after a demag cut setb IE_EA Set_Comp_Phase_B ; Set comparator phase ret ; Comm phase 2 to comm phase 3 comm2comm3: Clear_RPM_Out jb Flag_PGM_DIR_REV, comm23_rev clr IE_EA ; Disable all interrupts CpwmFET_off ; Turn off pwmfet Set_Pwm_B ; To reapply power after a demag cut AcomFET_on setb IE_EA Set_Comp_Phase_C ; Set comparator phase ret comm23_rev: clr IE_EA ; Disable all interrupts ApwmFET_off ; Turn off pwmfet (reverse) Set_Pwm_B ; To reapply power after a demag cut CcomFET_on setb IE_EA Set_Comp_Phase_A ; Set comparator phase (reverse) ret ; Comm phase 3 to comm phase 4 comm3comm4: Set_RPM_Out jb Flag_PGM_DIR_REV, comm34_rev clr IE_EA ; Disable all interrupts AcomFET_off ; Turn off comfet CcomFET_on ; Turn on comfet Set_Pwm_B ; To reapply power after a demag cut setb IE_EA Set_Comp_Phase_A ; Set comparator phase ret comm34_rev: clr IE_EA ; Disable all interrupts CcomFET_off ; Turn off comfet (reverse) AcomFET_on ; Turn on comfet (reverse) Set_Pwm_B ; To reapply power after a demag cut setb IE_EA Set_Comp_Phase_C ; Set comparator phase (reverse) ret ; Comm phase 4 to comm phase 5 comm4comm5: Clear_RPM_Out jb Flag_PGM_DIR_REV, comm45_rev clr IE_EA ; Disable all interrupts BpwmFET_off ; Turn off pwmfet Set_Pwm_A ; To reapply power after a demag cut CcomFET_on setb IE_EA Set_Comp_Phase_B ; Set comparator phase ret comm45_rev: clr IE_EA ; Disable all interrupts BpwmFET_off ; Turn off pwmfet Set_Pwm_C AcomFET_on ; To reapply power after a demag cut setb IE_EA Set_Comp_Phase_B ; Set comparator phase ret ; Comm phase 5 to comm phase 6 comm5comm6: Set_RPM_Out jb Flag_PGM_DIR_REV, comm56_rev clr IE_EA ; Disable all interrupts CcomFET_off ; Turn off comfet BcomFET_on ; Turn on comfet Set_Pwm_A ; To reapply power after a demag cut setb IE_EA Set_Comp_Phase_C ; Set comparator phase ret comm56_rev: clr IE_EA ; Disable all interrupts AcomFET_off ; Turn off comfet (reverse) BcomFET_on ; Turn on comfet Set_Pwm_C ; To reapply power after a demag cut setb IE_EA Set_Comp_Phase_A ; Set comparator phase (reverse) ret ; Comm phase 6 to comm phase 1 comm6comm1: Clear_RPM_Out jb Flag_PGM_DIR_REV, comm61_rev clr IE_EA ; Disable all interrupts ApwmFET_off ; Turn off pwmfet Set_Pwm_C BcomFET_on ; To reapply power after a demag cut setb IE_EA Set_Comp_Phase_A ; Set comparator phase ret comm61_rev: clr IE_EA ; Disable all interrupts CpwmFET_off ; Turn off pwmfet (reverse) Set_Pwm_A BcomFET_on ; To reapply power after a demag cut setb IE_EA Set_Comp_Phase_C ; Set comparator phase (reverse) ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Beeper routines (Multiple entry points) ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** beep_f1: mov Temp3, #66 ; Off wait loop length (Tone) mov Temp4, #(3500 / 66) ; Number of beep pulses (Duration) sjmp beep beep_f2: mov Temp3, #45 mov Temp4, #(3500 / 45) sjmp beep beep_f3: mov Temp3, #38 mov Temp4, #(3500 / 38) sjmp beep beep_f4: mov Temp3, #25 mov Temp4, #(3500 / 25) sjmp beep beep_f5: mov Temp3, #20 mov Temp4, #(3500 / 25) sjmp beep beep_f1_short: mov Temp3, #66 mov Temp4, #(2000 / 66) sjmp beep beep_f2_short: mov Temp3, #45 mov Temp4, #(2000 / 45) sjmp beep beep: mov A, Beep_Strength djnz ACC, beep_start ; Start if beep strength is not 1 ret beep_start: mov Temp2, #2 beep_onoff: clr A BcomFET_off ; BcomFET off djnz ACC, $ ; Allow some time after comfet is turned off BpwmFET_on ; BpwmFET on (in order to charge the driver of the BcomFET) djnz ACC, $ ; Let the pwmfet be turned on a while BpwmFET_off ; BpwmFET off again djnz ACC, $ ; Allow some time after pwmfet is turned off BcomFET_on ; BcomFET on djnz ACC, $ ; Allow some time after comfet is turned on ; Turn on pwmfet mov A, Temp2 jb ACC.0, beep_apwmfet_on ApwmFET_on beep_apwmfet_on: jnb ACC.0, beep_cpwmfet_on CpwmFET_on beep_cpwmfet_on: mov A, Beep_Strength djnz ACC, $ ; Turn off pwmfet mov A, Temp2 jb ACC.0, beep_apwmfet_off ApwmFET_off beep_apwmfet_off: jnb ACC.0, beep_cpwmfet_off CpwmFET_off beep_cpwmfet_off: mov A, #150 ; 25us off djnz ACC, $ djnz Temp2, beep_onoff ; Copy variable mov A, Temp3 mov Temp1, A beep_off: ; Fets off loop mov A, #150 djnz ACC, $ djnz Temp1, beep_off djnz Temp4, beep_start BcomFET_off ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Switch power off routine ; ; Switches all fets off ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** switch_power_off: All_pwmFETs_Off ; Turn off all pwm fets All_comFETs_Off ; Turn off all commutation fets Set_Pwms_Off ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Set default parameters ; ; Sets default programming parameters ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** set_default_parameters: mov Temp1, #_Pgm_Gov_P_Gain Push_Mem Temp1, #0FFh ; _Pgm_Gov_P_Gain Push_Mem Temp1, #0FFh ; _Pgm_Gov_I_Gain Push_Mem Temp1, #0FFh ; _Pgm_Gov_Mode Push_Mem Temp1, #0FFh ; _Pgm_Low_Voltage_Lim Push_Mem Temp1, #0FFh ; _Pgm_Motor_Gain Push_Mem Temp1, #0FFh ; _Pgm_Motor_Idle Push_Mem Temp1, #DEFAULT_PGM_STARTUP_PWR ; Pgm_Startup_Pwr Push_Mem Temp1, #0FFh ; _Pgm_Pwm_Freq Push_Mem Temp1, #DEFAULT_PGM_DIRECTION ; Pgm_Direction Push_Mem Temp1, #0FFh ; _Pgm_Input_Pol inc Temp1 ; Skip Initialized_L_Dummy inc Temp1 ; Skip Initialized_H_Dummy Push_Mem Temp1, #0FFh ; _Pgm_Enable_TX_Program Push_Mem Temp1, #0FFh ; _Pgm_Main_Rearm_Start Push_Mem Temp1, #0FFh ; _Pgm_Gov_Setup_Target Push_Mem Temp1, #0FFh ; _Pgm_Startup_Rpm Push_Mem Temp1, #0FFh ; _Pgm_Startup_Accel Push_Mem Temp1, #0FFh ; _Pgm_Volt_Comp Push_Mem Temp1, #DEFAULT_PGM_COMM_TIMING ; Pgm_Comm_Timing Push_Mem Temp1, #0FFh ; _Pgm_Damping_Force Push_Mem Temp1, #0FFh ; _Pgm_Gov_Range Push_Mem Temp1, #0FFh ; _Pgm_Startup_Method Push_Mem Temp1, #0FFh ; _Pgm_Min_Throttle Push_Mem Temp1, #0FFh ; _Pgm_Max_Throttle Push_Mem Temp1, #DEFAULT_PGM_BEEP_STRENGTH ; Pgm_Beep_Strength Push_Mem Temp1, #DEFAULT_PGM_BEACON_STRENGTH ; Pgm_Beacon_Strength Push_Mem Temp1, #DEFAULT_PGM_BEACON_DELAY ; Pgm_Beacon_Delay Push_Mem Temp1, #0FFh ; _Pgm_Throttle_Rate Push_Mem Temp1, #DEFAULT_PGM_DEMAG_COMP ; Pgm_Demag_Comp Push_Mem Temp1, #0FFh ; _Pgm_BEC_Voltage_High Push_Mem Temp1, #0FFh ; _Pgm_Center_Throttle Push_Mem Temp1, #0FFh ; _Pgm_Main_Spoolup_Time Push_Mem Temp1, #DEFAULT_PGM_ENABLE_TEMP_PROT ; Pgm_Enable_Temp_Prot Push_Mem Temp1, #DEFAULT_PGM_ENABLE_POWER_PROT ; Pgm_Enable_Power_Prot Push_Mem Temp1, #0FFh ; _Pgm_Enable_Pwm_Input Push_Mem Temp1, #0FFh ; _Pgm_Pwm_Dither Push_Mem Temp1, #DEFAULT_PGM_BRAKE_ON_STOP ; Pgm_Brake_On_Stop Push_Mem Temp1, #DEFAULT_PGM_LED_CONTROL ; Pgm_LED_Control ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Decode settings ; ; Decodes various settings ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** decode_settings: ; Load programmed direction mov Temp1, #Pgm_Direction mov A, @Temp1 clr C subb A, #3 setb Flag_PGM_BIDIR jnc ($+4) clr Flag_PGM_BIDIR clr Flag_PGM_DIR_REV mov A, @Temp1 jnb ACC.1, ($+5) setb Flag_PGM_DIR_REV mov C, Flag_PGM_DIR_REV mov Flag_PGM_BIDIR_REV, C ; Decode startup power mov Temp1, #Pgm_Startup_Pwr mov A, @Temp1 dec A mov DPTR, #STARTUP_POWER_TABLE movc A, @A+DPTR mov Temp1, #Pgm_Startup_Pwr_Decoded mov @Temp1, A ; Decode low rpm power slope mov Temp1, #Pgm_Startup_Pwr mov A, @Temp1 mov Low_Rpm_Pwr_Slope, A clr C subb A, #2 jnc ($+5) mov Low_Rpm_Pwr_Slope, #2 ; Decode demag compensation mov Temp1, #Pgm_Demag_Comp mov A, @Temp1 mov Demag_Pwr_Off_Thresh, #255 ; Set default cjne A, #2, decode_demag_high mov Demag_Pwr_Off_Thresh, #160 ; Settings for demag comp low decode_demag_high: cjne A, #3, decode_demag_done mov Demag_Pwr_Off_Thresh, #130 ; Settings for demag comp high decode_demag_done: ; Decode temperature protection limit mov Temp1, #Pgm_Enable_Temp_Prot mov A, @Temp1 mov Temp1, A jz decode_temp_done mov A, #(TEMP_LIMIT-TEMP_LIMIT_STEP) decode_temp_step: add A, #TEMP_LIMIT_STEP djnz Temp1, decode_temp_step decode_temp_done: mov Temp_Prot_Limit, A ; Dithering IF PWM_BITS_H == 1 mov Temp1, #Dithering_Patterns Push_Mem Temp1, #00h Push_Mem Temp1, #55h ELSEIF PWM_BITS_H == 0 mov Temp1, #Dithering_Patterns Push_Mem Temp1, #00h Push_Mem Temp1, #11h Push_Mem Temp1, #55h Push_Mem Temp1, #77h ENDIF ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Detect DShot RCP level ; ; Determine if RCP signal level is normal or inverted DShot ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** detect_rcp_level: mov A, #100 ; Must repeat the same level 100 times in a row mov C, RTX_PORT.RTX_PIN detect_rcp_level_read: jc ($+5) jb RTX_PORT.RTX_PIN, detect_rcp_level ; Level changed from low to high - start over jnc ($+5) jnb RTX_PORT.RTX_PIN, detect_rcp_level ; Level changed from high to low - start over djnz ACC, detect_rcp_level_read mov Flag_RCP_DSHOT_INVERTED, C ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; LED control ; ; Controls LEDs ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** led_control: mov Temp1, #Pgm_LED_Control mov A, @Temp1 mov Temp2, A anl A, #03h Set_LED_0 jnz led_0_done Clear_LED_0 led_0_done: mov A, Temp2 anl A, #0Ch Set_LED_1 jnz led_1_done Clear_LED_1 led_1_done: mov A, Temp2 anl A, #030h Set_LED_2 jnz led_2_done Clear_LED_2 led_2_done: mov A, Temp2 anl A, #0C0h Set_LED_3 jnz led_3_done Clear_LED_3 led_3_done: ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Check DShot command ; ; Determine received DShot command and perform action ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** dshot_cmd_check: mov A, Dshot_Cmd jz dshot_cmd_exit_no_clear mov Temp1, A clr C subb A, #6 ; Beacon beeps for command 1-5 jnc dshot_cmd_direction_1 call beacon_beep sjmp dshot_cmd_exit dshot_cmd_direction_1: ; Change programmed motor direction to normal cjne Temp1, #7, dshot_cmd_direction_2 clr C mov A, Dshot_Cmd_Cnt subb A, #6 ; Needs to receive it 6 times in a row jc dshot_cmd_exit_no_clear mov A, #1 jnb Flag_PGM_BIDIR, ($+5) mov A, #3 mov Temp1, #Pgm_Direction mov @Temp1, A clr Flag_PGM_DIR_REV clr Flag_PGM_BIDIR_REV sjmp dshot_cmd_exit dshot_cmd_direction_2: ; Change programmed motor direction to reversed cjne Temp1, #8, dshot_cmd_direction_bidir_off clr C mov A, Dshot_Cmd_Cnt subb A, #6 ; Needs to receive it 6 times in a row jc dshot_cmd_exit_no_clear mov A, #2 jnb Flag_PGM_BIDIR, ($+5) mov A, #4 mov Temp1, #Pgm_Direction mov @Temp1, A setb Flag_PGM_DIR_REV setb Flag_PGM_BIDIR_REV sjmp dshot_cmd_exit dshot_cmd_direction_bidir_off: ; Change programmed motor mode to normal (not bidirectional) cjne Temp1, #9, dshot_cmd_direction_bidir_on clr C mov A, Dshot_Cmd_Cnt subb A, #6 ; Needs to receive it 6 times in a row jc dshot_cmd_exit_no_clear jnb Flag_PGM_BIDIR, dshot_cmd_exit clr C mov Temp1, #Pgm_Direction mov A, @Temp1 subb A, #2 mov @Temp1, A clr Flag_PGM_BIDIR sjmp dshot_cmd_exit dshot_cmd_direction_bidir_on: ; Change programmed motor mode to bidirectional cjne Temp1, #10, dshot_cmd_direction_normal clr C mov A, Dshot_Cmd_Cnt subb A, #6 ; Needs to receive it 6 times in a row jc dshot_cmd_exit_no_clear jb Flag_PGM_BIDIR, dshot_cmd_exit mov Temp1, #Pgm_Direction mov A, @Temp1 add A, #2 mov @Temp1, A setb Flag_PGM_BIDIR dshot_cmd_exit: mov Dshot_Cmd, #0 mov Dshot_Cmd_Cnt, #0 dshot_cmd_exit_no_clear: ret dshot_cmd_direction_normal: ; Change programmed motor direction to that stored in eeprom cjne Temp1, #20, dshot_cmd_direction_reverse clr C mov A, Dshot_Cmd_Cnt subb A, #6 ; Needs to receive it 6 times in a row jc dshot_cmd_exit_no_clear clr IE_EA ; DPTR used in interrupts mov DPTR, #Eep_Pgm_Direction ; Read from flash mov A, #0 movc A, @A+DPTR setb IE_EA mov Temp1, #Pgm_Direction mov @Temp1, A rrc A ; Lsb to carry clr Flag_PGM_DIR_REV clr Flag_PGM_BIDIR_REV jc ($+4) setb Flag_PGM_DIR_REV jc ($+4) setb Flag_PGM_BIDIR_REV sjmp dshot_cmd_exit dshot_cmd_direction_reverse: ; Temporary reverse ; Change programmed motor direction to the reverse of what is stored in eeprom cjne Temp1, #21, dshot_cmd_save_settings clr C mov A, Dshot_Cmd_Cnt subb A, #6 ; Needs to receive it 6 times in a row jc dshot_cmd_exit_no_clear clr IE_EA ; DPTR used in interrupts mov DPTR, #Eep_Pgm_Direction ; Read from flash mov A, #0 movc A, @A+DPTR setb IE_EA mov Temp1, A cjne Temp1, #1, ($+5) mov A, #2 cjne Temp1, #2, ($+5) mov A, #1 cjne Temp1, #3, ($+5) mov A, #4 cjne Temp1, #4, ($+5) mov A, #3 mov Temp1, #Pgm_Direction mov @Temp1, A rrc A ; Lsb to carry clr Flag_PGM_DIR_REV clr Flag_PGM_BIDIR_REV jc ($+4) setb Flag_PGM_DIR_REV jc ($+4) setb Flag_PGM_BIDIR_REV sjmp dshot_cmd_exit dshot_cmd_save_settings: cjne Temp1, #12, dshot_cmd_exit clr C mov A, Dshot_Cmd_Cnt subb A, #6 ; Needs to receive it 6 times in a row jc dshot_cmd_exit_no_clear mov Flash_Key_1, #0A5h ; Initialize flash keys to valid values mov Flash_Key_2, #0F1h call erase_and_store_all_in_eeprom mov Flash_Key_1, #0 ; Initialize flash keys to invalid values mov Flash_Key_2, #0 setb IE_EA jmp dshot_cmd_exit ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; DShot beacon beep ; ; Beep with beacon strength ; Beep type 1-5 in Temp1 ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** beacon_beep: clr IE_EA call switch_power_off ; Switch power off in case braking is set mov Temp2, #Pgm_Beacon_Strength mov Beep_Strength, @Temp2 cjne Temp1, #1, beacon_beep2 call beep_f1 sjmp beacon_beep_exit beacon_beep2: cjne Temp1, #2, beacon_beep3 call beep_f2 sjmp beacon_beep_exit beacon_beep3: cjne Temp1, #3, beacon_beep4 call beep_f3 sjmp beacon_beep_exit beacon_beep4: cjne Temp1, #4, beacon_beep5 call beep_f4 sjmp beacon_beep_exit beacon_beep5: call beep_f5 beacon_beep_exit: mov Temp2, #Pgm_Beep_Strength mov Beep_Strength, @Temp2 setb IE_EA call wait100ms ret ;**** **** **** **** **** **** **** **** **** **** **** **** **** ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Main program start ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** ;**** **** **** **** **** **** **** **** **** **** **** **** **** pgm_start: ; Initialize flash keys to invalid values mov Flash_Key_1, #0 mov Flash_Key_2, #0 ; Disable the WDT mov WDTCN, #0DEh ; Disable watchdog mov WDTCN, #0ADh ; Initialize stack mov SP, #Stack ; 16 bytes of indirect RAM ; Initialize VDD monitor orl VDM0CN, #080h ; Enable the VDD monitor mov RSTSRC, #06h ; Set missing clock and VDD monitor as a reset source if not 1S capable ; Set clock frequency mov CLKSEL, #00h ; Set clock divider to 1 ; Switch power off call switch_power_off ; Ports initialization mov P0, #P0_INIT mov P0MDIN, #P0_DIGITAL mov P0MDOUT, #P0_PUSHPULL mov P0, #P0_INIT mov P0SKIP, #P0_SKIP mov P1, #P1_INIT mov P1MDIN, #P1_DIGITAL mov P1MDOUT, #P1_PUSHPULL mov P1, #P1_INIT mov P1SKIP, #P1_SKIP mov P2MDOUT, #P2_PUSHPULL ; Initialize the XBAR and related functionality Initialize_Xbar ; Switch power off again, after initializing ports call switch_power_off ; Clear RAM clr A ; Clear accumulator mov Temp1, A ; Clear Temp1 clear_ram: mov @Temp1, A ; Clear RAM djnz Temp1, clear_ram ; Is A not zero? - jump ; Set default programmed parameters call set_default_parameters ; Read all programmed parameters call read_all_eeprom_parameters ; Set beep strength mov Temp1, #Pgm_Beep_Strength mov Beep_Strength, @Temp1 ; Initializing beep clr IE_EA ; Disable interrupts explicitly call wait200ms call beep_f1 call wait10ms call beep_f2 call wait10ms call beep_f1 call wait10ms call beep_f3 call wait200ms call beep_f2 call beep_f4 call beep_f4 call led_control ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; No signal entry point ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** init_no_signal: ; Disable interrupts explicitly clr IE_EA ; Initialize flash keys to invalid values mov Flash_Key_1, #0 mov Flash_Key_2, #0 ; Check if input signal is high for more than 15ms mov Temp1, #250 input_high_check_1: mov Temp2, #250 input_high_check_2: jnb RTX_PORT.RTX_PIN, bootloader_done ; Look for low djnz Temp2, input_high_check_2 djnz Temp1, input_high_check_1 ljmp 1C00h ; Jump to bootloader bootloader_done: ; Decode settings call decode_settings ; Set beep strength mov Temp1, #Pgm_Beep_Strength mov Beep_Strength, @Temp1 ; Switch power off call switch_power_off ; Set clock frequency IF MCU_48MHZ == 1 Set_MCU_Clk_24MHz ENDIF ; Setup timers for DShot mov TCON, #51h ; Timer 0/1 run and INT0 edge triggered mov CKCON0, #01h ; Timer 0/1 clock is system clock divided by 4 (for DShot150) mov TMOD, #0AAh ; Timer 0/1 set to 8bits auto reload and gated by INT0/1 mov TH0, #0 ; Auto reload value zero mov TH1, #0 mov TMR2CN0, #04h ; Timer 2 enabled mov TMR3CN0, #04h ; Timer 3 enabled Initialize_PCA ; Initialize PCA Set_Pwm_Polarity ; Set pwm polarity Enable_Power_Pwm_Module ; Enable power pwm module Enable_Damp_Pwm_Module ; Enable damping pwm module Initialize_Comparator ; Initialize comparator Initialize_Adc ; Initialize ADC operation call wait1ms mov Stall_Cnt, #0 ; Reset stall count mov Dshot_Cmd, #0 ; Clear DShot command mov Dshot_Cmd_Cnt, #0 ; Clear DShot command count ; Setup RCP for DShot call detect_rcp_level ; Detect normal or inverted DShot ; Route RCP according to detected DShot signal (normal or inverted) mov IT01CF, #(80h + (RTX_PIN SHL 4) + RTX_PIN) ; Route RCP input to INT0/1, with INT1 inverted jnb Flag_RCP_DSHOT_INVERTED, ($+6) mov IT01CF, #(08h + (RTX_PIN SHL 4) + RTX_PIN) ; Route RCP input to INT0/1, with INT0 inverted ; Setup interrupts for DShot mov IE, #2Dh ; Enable timer 1/2 interrupts and INT0/1 interrupts mov EIE1, #90h ; Enable timer 3 and PCA0 interrupts mov IP, #03h ; High priority to timer 0 and INT0 interrupts setb IE_EA ; Enable all interrupts call wait200ms ; Setup variables for DShot150 ; TODO: dshot150 not supported for now ; IF MCU_48MHZ == 1 ; mov DShot_Timer_Preset, #128 ; Load DShot sync timer preset (for DShot150) ; ELSE ; mov DShot_Timer_Preset, #192 ; ENDIF ; ; TODO: we cannot currently support DShot150 on 48MHz (because of DShot_Frame_Length_Thr) ; IF MCU_48MHZ == 0 ; mov DShot_Pwm_Thr, #10 ; Load DShot qualification pwm threshold (for DShot150) ; mov DShot_Frame_Length_Thr, #160 ; Load DShot frame length criteria ; Set_DShot_Tlm_Bitrate 187500 ; = 5/4 * 150000 ; ; Test whether signal is DShot150 ; mov Rcp_Outside_Range_Cnt, #10 ; Set out of range counter ; call wait100ms ; Wait for new RC pulse ; mov DShot_Pwm_Thr, #8 ; Load DShot regular pwm threshold ; clr C ; mov A, Rcp_Outside_Range_Cnt ; Check if pulses were accepted ; subb A, #10 ; mov Dshot_Cmd, #0 ; mov Dshot_Cmd_Cnt, #0 ; jc arming_begin ; ENDIF mov CKCON0, #0Ch ; Timer 0/1 clock is system clock (for DShot300/600) ; Setup variables for DShot300 IF MCU_48MHZ == 1 mov DShot_Timer_Preset, #0 ; Load DShot sync timer preset (for DShot300) ELSE mov DShot_Timer_Preset, #128 ENDIF mov DShot_Pwm_Thr, #20 ; Load DShot qualification pwm threshold (for DShot300) mov DShot_Frame_Length_Thr, #80 ; Load DShot frame length criteria Set_DShot_Tlm_Bitrate 375000 ; = 5/4 * 300000 ; Test whether signal is DShot300 mov Rcp_Outside_Range_Cnt, #10 ; Set out of range counter call wait100ms ; Wait for new RC pulse mov DShot_Pwm_Thr, #16 ; Load DShot regular pwm threshold clr C mov A, Rcp_Outside_Range_Cnt ; Check if pulses were accepted subb A, #10 mov Dshot_Cmd, #0 mov Dshot_Cmd_Cnt, #0 jc arming_begin ; Setup variables for DShot600 IF MCU_48MHZ == 1 mov DShot_Timer_Preset, #128 ; Load DShot sync timer preset (for DShot600) ELSE mov DShot_Timer_Preset, #192 ENDIF mov DShot_Pwm_Thr, #10 ; Load DShot qualification pwm threshold (for DShot600) mov DShot_Frame_Length_Thr, #40 ; Load DShot frame length criteria Set_DShot_Tlm_Bitrate 750000 ; = 5/4 * 600000 ; Test whether signal is DShot600 mov Rcp_Outside_Range_Cnt, #10 ; Set out of range counter call wait100ms ; Wait for new RC pulse mov DShot_Pwm_Thr, #8 ; Load DShot regular pwm threshold clr C mov A, Rcp_Outside_Range_Cnt ; Check if pulses were accepted subb A, #10 mov Dshot_Cmd, #0 mov Dshot_Cmd_Cnt, #0 jc arming_begin ajmp init_no_signal arming_begin: ; Beep arm sequence start signal clr IE_EA ; Disable all interrupts call beep_f1_short ; Signal that RC pulse is ready setb IE_EA ; Enable all interrupts ; Arming sequence start arming_wait: call wait100ms ; Wait for new throttle value jnb Flag_RCP_STOP, arming_wait ; Start over if not below stop ; Beep arm sequence end signal clr IE_EA ; Disable all interrupts call beep_f2_short ; Signal that ESC is armed setb IE_EA ; Enable all interrupts call wait200ms ; Armed and waiting for power on wait_for_power_on: clr A mov Comm_Period4x_L, A ; Reset commutation period for telemetry mov Comm_Period4x_H, A mov Power_On_Wait_Cnt_L, A ; Clear wait counter mov Power_On_Wait_Cnt_H, A wait_for_power_on_loop: inc Power_On_Wait_Cnt_L ; Increment low wait counter mov A, Power_On_Wait_Cnt_L cpl A jnz wait_for_power_on_no_beep ; Counter wrapping (about 3 sec) inc Power_On_Wait_Cnt_H ; Increment high wait counter mov Temp1, #Pgm_Beacon_Delay mov A, @Temp1 mov Temp1, #25 ; Approximately 1 min dec A jz beep_delay_set mov Temp1, #50 ; Approximately 2 min dec A jz beep_delay_set mov Temp1, #125 ; Approximately 5 min dec A jz beep_delay_set mov Temp1, #250 ; Approximately 10 min dec A jz beep_delay_set mov Power_On_Wait_Cnt_H, #0 ; Reset counter for infinite delay beep_delay_set: clr C mov A, Power_On_Wait_Cnt_H subb A, Temp1 ; Check against chosen delay jc wait_for_power_on_no_beep ; Has delay elapsed? call switch_power_off ; Switch power off in case braking is set call wait1ms dec Power_On_Wait_Cnt_H ; Decrement high wait counter mov Power_On_Wait_Cnt_L, #0 ; Set low wait counter mov Temp1, #Pgm_Beacon_Strength mov Beep_Strength, @Temp1 clr IE_EA ; Disable all interrupts call beep_f4 ; Signal that there is no signal setb IE_EA ; Enable all interrupts mov Temp1, #Pgm_Beep_Strength mov Beep_Strength, @Temp1 call wait100ms ; Wait for new RC pulse to be measured wait_for_power_on_no_beep: jb Flag_PACKET_PENDING, wait_for_power_telemetry_done setb Flag_T3_PENDING ; Set flag temporarily to avoid early return call dshot_tlm_create_packet clr Flag_T3_PENDING wait_for_power_telemetry_done: call wait10ms mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value jnz wait_for_power_on_not_missing ; If it is not zero - proceed ajmp init_no_signal ; If pulses missing - go back to detect input signal wait_for_power_on_not_missing: jnb Flag_RCP_STOP, wait_for_power_on_nonzero ; Higher than stop, Yes - proceed mov A, Dshot_Cmd jz wait_for_power_on_loop ; Check DShot command if not zero, otherwise wait for power call dshot_cmd_check sjmp wait_for_power_on_not_missing ; Check dshot command again, in case command needs to be received multiple times wait_for_power_on_nonzero: call wait100ms ; Wait to see if start pulse was only a glitch mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value jnz ($+5) ; If it is not zero - proceed ajmp init_no_signal ; If it is zero (pulses missing) - go back to detect input signal mov Dshot_Cmd, #0 mov Dshot_Cmd_Cnt, #0 ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Start entry point ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** init_start: clr IE_EA ; Disable interrupts call switch_power_off setb IE_EA ; Enable interrupts clr A mov Flags0, A ; Clear flags0 mov Flags1, A ; Clear flags1 mov Flags_Startup, A ; Clear startup flags mov Demag_Detected_Metric, A ; Clear demag metric call wait1ms Start_Adc ; Start adc conversion jnb ADC0CN0_ADINT, $ ; Wait for adc conversion to complete Read_Adc_Result ; Read initial temperature mov A, Temp2 jnz ($+3) ; Is reading below 256? mov Temp1, A ; Yes - set average temperature value to zero mov Current_Average_Temp, Temp1 ; Set initial average temperature mov Adc_Conversion_Cnt, #8 ; Make sure a temp reading is done call check_temp_voltage_and_limit_power mov Adc_Conversion_Cnt, #8 ; Make sure a temp reading is done next time ; Set up start operating conditions clr IE_EA ; Disable interrupts ; Adjust startup power mov Temp2, #Pgm_Startup_Pwr_Decoded mov Pwm_Limit_Beg, @Temp2 ; Set initial pwm limit mov Pwm_Limit, Pwm_Limit_Beg mov Pwm_Limit_By_Rpm, Pwm_Limit_Beg setb IE_EA ; Enable interrupts ; Begin startup sequence IF MCU_48MHZ == 1 Set_MCU_Clk_48MHz ; Scale DShot criteria for 48MHz clr C mov A, DShot_Frame_Length_Thr ; Scale frame length criteria rlc A mov DShot_Frame_Length_Thr, A clr C mov A, DShot_Pwm_Thr ; Scale pulse width criteria rlc A mov DShot_Pwm_Thr, A ; Scale DShot telemetry for 24MHz mov A, DShot_GCR_Pulse_Time_1 xch A, DShot_GCR_Pulse_Time_1_Tmp mov DShot_GCR_Pulse_Time_1, A mov A, DShot_GCR_Pulse_Time_2 xch A, DShot_GCR_Pulse_Time_2_Tmp mov DShot_GCR_Pulse_Time_2, A mov A, DShot_GCR_Pulse_Time_3 xch A, DShot_GCR_Pulse_Time_3_Tmp mov DShot_GCR_Pulse_Time_3, A mov DShot_GCR_Start_Delay, #DSHOT_TLM_START_DELAY_48 ENDIF jnb Flag_PGM_BIDIR, init_start_bidir_done ; Check if bidirectional operation clr Flag_PGM_DIR_REV ; Set spinning direction. Default fwd jnb Flag_RCP_DIR_REV, ($+5) ; Check force direction setb Flag_PGM_DIR_REV ; Set spinning direction init_start_bidir_done: setb Flag_STARTUP_PHASE ; Set startup phase flag mov Startup_Cnt, #0 ; Reset counter call comm5comm6 ; Initialize commutation call comm6comm1 call initialize_timing ; Initialize timing call calc_next_comm_timing ; Set virtual commutation point call initialize_timing ; Initialize timing call calc_next_comm_timing call initialize_timing ; Initialize timing ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; ; Run entry point ; ;**** **** **** **** **** **** **** **** **** **** **** **** **** ; Run 1 = B(p-on) + C(n-pwm) - comparator A evaluated ; Out_cA changes from low to high run1: call wait_for_comp_out_high ; Wait for high ; setup_comm_wait ; Setup wait time from zero cross to commutation ; evaluate_comparator_integrity ; Check whether comparator reading has been normal call wait_for_comm ; Wait from zero cross to commutation call comm1comm2 ; Commutate call calc_next_comm_timing ; Calculate next timing and wait advance timing wait ; wait_advance_timing ; Wait advance timing and start zero cross wait ; calc_new_wait_times ; wait_before_zc_scan ; Wait zero cross wait and start zero cross timeout ; Run 2 = A(p-on) + C(n-pwm) - comparator B evaluated ; Out_cB changes from high to low run2: call wait_for_comp_out_low ; setup_comm_wait ; evaluate_comparator_integrity call set_pwm_limit ; Set pwm power limit for low or high rpm call wait_for_comm call comm2comm3 call calc_next_comm_timing ; wait_advance_timing ; calc_new_wait_times ; wait_before_zc_scan ; Run 3 = A(p-on) + B(n-pwm) - comparator C evaluated ; Out_cC changes from low to high run3: call wait_for_comp_out_high ; setup_comm_wait ; evaluate_comparator_integrity call wait_for_comm call comm3comm4 call calc_next_comm_timing ; wait_advance_timing ; calc_new_wait_times ; wait_before_zc_scan ; Run 4 = C(p-on) + B(n-pwm) - comparator A evaluated ; Out_cA changes from high to low run4: call wait_for_comp_out_low ; setup_comm_wait ; evaluate_comparator_integrity call wait_for_comm call comm4comm5 call calc_next_comm_timing ; wait_advance_timing ; calc_new_wait_times ; wait_before_zc_scan ; Run 5 = C(p-on) + A(n-pwm) - comparator B evaluated ; Out_cB changes from low to high run5: call wait_for_comp_out_high ; setup_comm_wait ; evaluate_comparator_integrity call wait_for_comm call comm5comm6 call calc_next_comm_timing ; wait_advance_timing ; calc_new_wait_times ; wait_before_zc_scan ; Run 6 = B(p-on) + A(n-pwm) - comparator C evaluated ; Out_cC changes from high to low run6: Start_Adc ; Start adc conversion call wait_for_comp_out_low ; setup_comm_wait ; evaluate_comparator_integrity call wait_for_comm call comm6comm1 call check_temp_voltage_and_limit_power call calc_next_comm_timing ; wait_advance_timing ; calc_new_wait_times ; wait_before_zc_scan ; Check if it is direct startup jnb Flag_STARTUP_PHASE, normal_run_checks ; Set spoolup power variables mov Pwm_Limit, Pwm_Limit_Beg ; Set initial max power ; Check startup counter mov Temp2, #24 ; Set nominal startup parameters mov Temp3, #12 clr C mov A, Startup_Cnt ; Load counter subb A, Temp2 ; Is counter above requirement? jc direct_start_check_rcp ; No - proceed clr Flag_STARTUP_PHASE ; Clear startup phase flag setb Flag_INITIAL_RUN_PHASE ; Set initial run phase flag mov Initial_Run_Rot_Cntd, Temp3 ; Set initial run rotation count mov Pwm_Limit, Pwm_Limit_Beg mov Pwm_Limit_By_Rpm, Pwm_Limit_Beg sjmp normal_run_checks direct_start_check_rcp: jnb Flag_RCP_STOP, run1 ; If pulse is above stop value - Continue to run ajmp run_to_wait_for_power_on normal_run_checks: ; Check if it is initial run phase jnb Flag_INITIAL_RUN_PHASE, initial_run_phase_done ; If not initial run phase - branch jb Flag_DIR_CHANGE_BRAKE, initial_run_phase_done ; If a direction change - branch ; Decrement startup rotation count mov A, Initial_Run_Rot_Cntd dec A ; Check number of initial rotations jnz initial_run_check_startup_rot ; Branch if counter is not zero clr Flag_INITIAL_RUN_PHASE ; Clear initial run phase flag setb Flag_MOTOR_STARTED ; Set motor started ajmp run1 ; Continue with normal run initial_run_check_startup_rot: mov Initial_Run_Rot_Cntd, A ; Not zero - store counter jb Flag_PGM_BIDIR, initial_run_continue_run ; Check if bidirectional operation jb Flag_RCP_STOP, run_to_wait_for_power_on ; Check if pulse is below stop value initial_run_continue_run: ajmp run1 ; Continue to run initial_run_phase_done: ; Reset stall count mov Stall_Cnt, #0 ; Exit run loop after a given time jb Flag_PGM_BIDIR, run6_check_timeout ; Check if bidirectional operation mov Temp1, #250 mov Temp2, #Pgm_Brake_On_Stop mov A, @Temp2 jz ($+4) mov Temp1, #3 ; About 100ms before stopping when brake is set clr C mov A, Rcp_Stop_Cnt ; Load stop RC pulse counter low byte value subb A, Temp1 ; Is number of stop RC pulses above limit? jnc run_to_wait_for_power_on ; Yes, go back to wait for power on run6_check_timeout: mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value jz run_to_wait_for_power_on ; If it is zero - go back to wait for power on run6_check_dir: jnb Flag_PGM_BIDIR, run6_check_speed ; Check if bidirectional operation jb Flag_PGM_DIR_REV, run6_check_dir_rev ; Check if actual rotation direction jb Flag_RCP_DIR_REV, run6_check_dir_change ; Matches force direction sjmp run6_check_speed run6_check_dir_rev: jnb Flag_RCP_DIR_REV, run6_check_dir_change sjmp run6_check_speed run6_check_dir_change: jb Flag_DIR_CHANGE_BRAKE, run6_check_speed setb Flag_DIR_CHANGE_BRAKE ; Set brake flag mov Pwm_Limit, Pwm_Limit_Beg ; Set max power while braking ajmp run4 ; Go back to run 4, thereby changing force direction run6_check_speed: mov Temp1, #0F0h ; Default minimum speed jnb Flag_DIR_CHANGE_BRAKE, run6_brake_done; Is it a direction change? mov Pwm_Limit, Pwm_Limit_Beg ; Set max power while braking mov Temp1, #20h ; Bidirectional braking termination speed run6_brake_done: clr C mov A, Comm_Period4x_H ; Is Comm_Period4x more than 32ms (~1220 eRPM)? subb A, Temp1 jnc ($+5) ; Yes - stop or turn direction ajmp run1 ; No - go back to run 1 jnb Flag_DIR_CHANGE_BRAKE, run_to_wait_for_power_on ; If it is not a direction change - stop clr Flag_DIR_CHANGE_BRAKE ; Clear brake flag clr Flag_PGM_DIR_REV ; Set spinning direction. Default fwd jnb Flag_RCP_DIR_REV, ($+5) ; Check force direction setb Flag_PGM_DIR_REV ; Set spinning direction setb Flag_INITIAL_RUN_PHASE mov Initial_Run_Rot_Cntd, #18 mov Pwm_Limit, Pwm_Limit_Beg ; Set initial max power ajmp run1 ; Go back to run 1 run_to_wait_for_power_on_fail: inc Stall_Cnt ; Increment stall count ; Check if RCP is zero, then it is a normal stop jnb Flag_RCP_STOP, run_to_wait_for_power_on_stall_done run_to_wait_for_power_on: mov Stall_Cnt, #0 run_to_wait_for_power_on_stall_done: clr IE_EA call switch_power_off mov Flags0, #0 ; Clear flags0 mov Flags1, #0 ; Clear flags1 mov Flags_Startup, #0 ; Clear startup flags IF MCU_48MHZ == 1 Set_MCU_Clk_24MHz ; Scale DShot criteria for 24MHz clr C mov A, DShot_Frame_Length_Thr ; Scale frame length criteria rrc A mov DShot_Frame_Length_Thr, A clr C mov A, DShot_Pwm_Thr ; Scale pulse width criteria rrc A mov DShot_Pwm_Thr, A ; Scale DShot telemetry for 24MHz mov A, DShot_GCR_Pulse_Time_1 xch A, DShot_GCR_Pulse_Time_1_Tmp mov DShot_GCR_Pulse_Time_1, A mov A, DShot_GCR_Pulse_Time_2 xch A, DShot_GCR_Pulse_Time_2_Tmp mov DShot_GCR_Pulse_Time_2, A mov A, DShot_GCR_Pulse_Time_3 xch A, DShot_GCR_Pulse_Time_3_Tmp mov DShot_GCR_Pulse_Time_3, A mov DShot_GCR_Start_Delay, #DSHOT_TLM_START_DELAY ENDIF setb IE_EA call wait100ms ; Wait for pwm to be stopped call switch_power_off mov Temp1, #Pgm_Brake_On_Stop mov A, @Temp1 jz run_to_wait_for_power_on_brake_done AcomFET_on BcomFET_on CcomFET_on run_to_wait_for_power_on_brake_done: clr C mov A, Stall_Cnt subb A, #10 ; Maximum consecutive stalls before stopping jc ($+5) ljmp init_no_signal ; Stalled too many times ljmp wait_for_power_on ; Go back to wait for power on ;**** **** **** **** **** **** **** **** **** **** **** **** **** $include (BLHeliPgm.inc) ; Include source code for programming the ESC $include (BLHeliBootLoad.inc) ; Include source code for bootloader ;**** **** **** **** **** **** **** **** **** **** **** **** **** CSEG AT 19FDh reset: ljmp pgm_start END