You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

3734 lines
97 KiB

$NOMOD51
;**** **** **** **** ****
;
; BLHeli program for controlling brushless motors in multirotors
;
; Copyright 2011, 2012 Steffen Skaug
; This program is distributed under the terms of the GNU General Public License
;
; This file is part of BLHeli.
;
; BLHeli is free software: you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 3 of the License, or
; (at your option) any later version.
;
; BLHeli is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with BLHeli. If not, see <http://www.gnu.org/licenses/>.
;
;**** **** **** **** ****
;
; This software was initially designed for use with Eflite mCP X, but is now adapted to copters/planes in general
;
; The software was inspired by and started from from Bernard Konze's BLMC: http://home.versanet.de/~bkonze/blc_6a/blc_6a.htm
; And also Simon Kirby's TGY: https://github.com/sim-/tgy
;
; This file is best viewed with tab width set to 5
;
; The code is designed for multirotor applications, running damped light mode
;
; The input signal can be Normal (1-2ms), OneShot125 (125-250us), OneShot42 (41.7-83.3us) or Multishot (5-25us) at rates as high as allowed by the format.
; The code autodetects normal, OneShot125, Oneshot42 or Multishot.
;
; The first lines of the software must be modified according to the chosen environment:
; ESCNO EQU "ESC"
; MCU_48MHZ EQU "N"
; FETON_DELAY EQU "N"
;
;**** **** **** **** ****
; Revision history:
; - Rev16.0 Started. Built upon rev 14.5 of base code
; Using hardware pwm for very smooth throttle response, silent running and support of very high rpms
; Implemented reverse bidirectional mode
; Implemented separate throttle gains fwd and rev in bidirectional mode
; Implemented support for Oneshot42 and Multishot
; - Rev16.1 Made low rpm power limiting programmable through the startup power parameter
; - Rev16.2 Fixed bug that prevented temperature protection
; Improved robustness to very high input signal rates
; Beeps can be turned off by programming beep strength to 1
; Throttle cal difference is checked to be above required minimum before storing. Throttle cal max is not stored until successful min throttle cal
; - Rev16.3 Implemented programmable temperature protection
; Improved protection of bootloader and generally reduced risk of flash corruption
; Some small changes for improved sync hold
;
;
;**** **** **** **** ****
; Minimum 8K Bytes of In-System Self-Programmable Flash
; Minimum 512 Bytes Internal SRAM
;
;**** **** **** **** ****
; Master clock is internal 24MHz oscillator (or 48MHz, for which the times below are halved)
; Although 24/48 are used in the code, the exact clock frequencies are 24.5MHz or 49.0 MHz
; Timer 0 (41.67ns counts) always counts up and is used for
; - RC pulse measurement
; Timer 2 (500ns counts) always counts up and is used for
; - RC pulse timeout counts and commutation times
; Timer 3 (500ns counts) always counts up and is used for
; - Commutation timeouts
; PCA0 (41.67ns counts) always counts up and is used for
; - Hardware PWM generation
;
;**** **** **** **** ****
; Interrupt handling
; The C8051 does not disable interrupts when entering an interrupt routine.
; Also some interrupt flags need to be cleared by software
; The code disables interrupts in some interrupt routines
; - Interrupts are disabled during beeps, to avoid audible interference from interrupts
;
;**** **** **** **** ****
; Motor control:
; - Brushless motor control with 6 states for each electrical 360 degrees
; - An advance timing of 0deg has zero cross 30deg after one commutation and 30deg before the next
; - Timing advance in this implementation is set to 15deg nominally
; - Motor pwm is always damped light (aka complementary pwm, regenerative braking)
; Motor sequence starting from zero crossing:
; - Timer wait: Wt_Comm 15deg ; Time to wait from zero cross to actual commutation
; - Timer wait: Wt_Advance 15deg ; Time to wait for timing advance. Nominal commutation point is after this
; - Timer wait: Wt_Zc_Scan 7.5deg ; Time to wait before looking for zero cross
; - Scan for zero cross 22.5deg ; Nominal, with some motor variations
;
; Motor startup:
; There is a startup phase and an initial run phase, before normal bemf commutation run begins.
;
;**** **** **** **** ****
; List of enumerated supported ESCs
A_ EQU 1 ; X X RC X MC MB MA CC X X Cc Cp Bc Bp Ac Ap
B_ EQU 2 ; X X RC X MC MB MA CC X X Ap Ac Bp Bc Cp Cc
C_ EQU 3 ; Ac Ap MC MB MA CC X RC X X X X Cc Cp Bc Bp
D_ EQU 4 ; X X RC X CC MA MC MB X X Cc Cp Bc Bp Ac Ap Com fets inverted
E_ EQU 5 ; L1 L0 RC X MC MB MA CC X L2 Cc Cp Bc Bp Ac Ap A with LEDs
F_ EQU 6 ; X X RC X MA MB MC CC X X Cc Cp Bc Bp Ac Ap
G_ EQU 7 ; X X RC X CC MA MC MB X X Cc Cp Bc Bp Ac Ap Like D, but noninverted com fets
H_ EQU 8 ; RC X X X MA MB CC MC X Ap Bp Cp X Ac Bc Cc
I_ EQU 9 ; X X RC X MC MB MA CC X X Ac Bc Cc Ap Bp Cp
J_ EQU 10 ; L2 L1 L0 RC CC MB MC MA X X Cc Bc Ac Cp Bp Ap
K_ EQU 11 ; X X MC X MB CC MA RC X X Ap Bp Cp Cc Bc Ac Com fets inverted
L_ EQU 12 ; X X RC X CC MA MB MC X X Ac Bc Cc Ap Bp Cp
;**** **** **** **** ****
; Select the port mapping to use (or unselect all for use with external batch compile file)
;ESCNO EQU A_
;ESCNO EQU B_
;ESCNO EQU C_
;ESCNO EQU D_
;ESCNO EQU E_
;ESCNO EQU F_
;ESCNO EQU G_
;ESCNO EQU H_
;ESCNO EQU I_
;ESCNO EQU J_
;ESCNO EQU K_
;ESCNO EQU L_
;**** **** **** **** ****
; Select the MCU type (or unselect for use with external batch compile file)
;MCU_48MHZ EQU 1
;**** **** **** **** ****
; Select the fet deadtime (or unselect for use with external batch compile file)
;FETON_DELAY EQU 50 ; 20.4ns per step
;**** **** **** **** ****
; ESC selection statements
IF ESCNO == A_
$include (A.inc) ; Select pinout A
ENDIF
IF ESCNO == B_
$include (B.inc) ; Select pinout B
ENDIF
IF ESCNO == C_
$include (C.inc) ; Select pinout C
ENDIF
IF ESCNO == D_
$include (D.inc) ; Select pinout D
ENDIF
IF ESCNO == E_
$include (E.inc) ; Select pinout E
ENDIF
IF ESCNO == F_
$include (F.inc) ; Select pinout F
ENDIF
IF ESCNO == G_
$include (G.inc) ; Select pinout G
ENDIF
IF ESCNO == H_
$include (H.inc) ; Select pinout H
ENDIF
IF ESCNO == I_
$include (I.inc) ; Select pinout I
ENDIF
IF ESCNO == J_
$include (J.inc) ; Select pinout J
ENDIF
IF ESCNO == K_
$include (K.inc) ; Select pinout K
ENDIF
IF ESCNO == L_
$include (L.inc) ; Select pinout L
ENDIF
;**** **** **** **** ****
; Programming defaults
;
DEFAULT_PGM_STARTUP_PWR EQU 9 ; 1=0.031 2=0.047 3=0.063 4=0.094 5=0.125 6=0.188 7=0.25 8=0.38 9=0.50 10=0.75 11=1.00 12=1.25 13=1.50
DEFAULT_PGM_COMM_TIMING EQU 3 ; 1=Low 2=MediumLow 3=Medium 4=MediumHigh 5=High
DEFAULT_PGM_DEMAG_COMP EQU 2 ; 1=Disabled 2=Low 3=High
DEFAULT_PGM_DIRECTION EQU 1 ; 1=Normal 2=Reversed 3=Bidir 4=Bidir rev
DEFAULT_PGM_BEEP_STRENGTH EQU 40 ; Beep strength
DEFAULT_PGM_BEACON_STRENGTH EQU 80 ; Beacon strength
DEFAULT_PGM_BEACON_DELAY EQU 4 ; 1=1m 2=2m 3=5m 4=10m 5=Infinite
; COMMON
DEFAULT_PGM_ENABLE_TX_PROGRAM EQU 1 ; 1=Enabled 0=Disabled
DEFAULT_PGM_MIN_THROTTLE EQU 37 ; 4*37+1000=1148
DEFAULT_PGM_MAX_THROTTLE EQU 208 ; 4*208+1000=1832
DEFAULT_PGM_CENTER_THROTTLE EQU 122 ; 4*122+1000=1488 (used in bidirectional mode)
DEFAULT_PGM_ENABLE_TEMP_PROT EQU 7 ; 0=Disabled 1=80C 2=90C 3=100C 4=110C 5=120C 6=130C 7=140C
DEFAULT_PGM_ENABLE_POWER_PROT EQU 1 ; 1=Enabled 0=Disabled
DEFAULT_PGM_BRAKE_ON_STOP EQU 0 ; 1=Enabled 0=Disabled
DEFAULT_PGM_LED_CONTROL EQU 0 ; Byte for LED control. 2bits per LED, 0=Off, 1=On
;**** **** **** **** ****
; Temporary register definitions
Temp1 EQU R0
Temp2 EQU R1
Temp3 EQU R2
Temp4 EQU R3
Temp5 EQU R4
Temp6 EQU R5
Temp7 EQU R6
Temp8 EQU R7
;**** **** **** **** ****
; Register definitions
DSEG AT 20h ; Variables segment
Bit_Access: DS 1 ; MUST BE AT THIS ADDRESS. Variable at bit accessible address (for non interrupt routines)
Bit_Access_Int: DS 1 ; Variable at bit accessible address (for interrupts)
Rcp_Outside_Range_Cnt: DS 1 ; RC pulse outside range counter (incrementing)
Rcp_Timeout_Cntd: DS 1 ; RC pulse timeout counter (decrementing)
Flags0: DS 1 ; State flags. Reset upon init_start
T3_PENDING EQU 0 ; Timer3 pending flag
DEMAG_DETECTED EQU 1 ; Set when excessive demag time is detected
DEMAG_CUT_POWER EQU 2 ; Set when demag compensation cuts power
COMP_TIMED_OUT EQU 3 ; Set when comparator reading timed out
; EQU 4
; EQU 5
; EQU 6
; EQU 7
Flags1: DS 1 ; State flags. Reset upon init_start
STARTUP_PHASE EQU 0 ; Set when in startup phase
INITIAL_RUN_PHASE EQU 1 ; Set when in initial run phase, before synchronized run is achieved
MOTOR_STARTED EQU 2 ; Set when motor is started
DIR_CHANGE_BRAKE EQU 3 ; Set when braking before direction change
HIGH_RPM EQU 4 ; Set when motor rpm is high (Comm_Period4x_H less than 2)
; EQU 5
; EQU 6
; EQU 7
Flags2: DS 1 ; State flags. NOT reset upon init_start
RCP_UPDATED EQU 0 ; New RC pulse length value available
RCP_ONESHOT125 EQU 1 ; RC pulse input is OneShot125 (125-250us)
RCP_ONESHOT42 EQU 2 ; RC pulse input is OneShot42 (41.67-83us)
RCP_MULTISHOT EQU 3 ; RC pulse input is Multishot (5-25us)
RCP_DIR_REV EQU 4 ; RC pulse direction in bidirectional mode
RCP_FULL_RANGE EQU 5 ; When set full input signal range is used (1000-2000us) and stored calibration values are ignored
; EQU 6
; EQU 7
Flags3: DS 1 ; State flags. NOT reset upon init_start
PGM_DIR_REV EQU 0 ; Programmed direction. 0=normal, 1=reversed
PGM_BIDIR_REV EQU 1 ; Programmed bidirectional direction. 0=normal, 1=reversed
PGM_BIDIR EQU 2 ; Programmed bidirectional operation. 0=normal, 1=bidirectional
; EQU 3
; EQU 4
; EQU 5
; EQU 6
; EQU 7
;**** **** **** **** ****
; RAM definitions
DSEG AT 30h ; Ram data segment, direct addressing
Initial_Arm: DS 1 ; Variable that is set during the first arm sequence after power on
Min_Throttle_L: DS 1 ; Minimum throttle scaled (lo byte)
Min_Throttle_H: DS 1 ; Minimum throttle scaled (hi byte)
Center_Throttle_L: DS 1 ; Center throttle scaled (lo byte)
Center_Throttle_H: DS 1 ; Center throttle scaled (hi byte)
Max_Throttle_L: DS 1 ; Maximum throttle scaled (lo byte)
Max_Throttle_H: DS 1 ; Maximum throttle scaled (hi byte)
Power_On_Wait_Cnt_L: DS 1 ; Power on wait counter (lo byte)
Power_On_Wait_Cnt_H: DS 1 ; Power on wait counter (hi byte)
Startup_Cnt: DS 1 ; Startup phase commutations counter (incrementing)
Startup_Zc_Timeout_Cntd: DS 1 ; Startup zero cross timeout counter (decrementing)
Initial_Run_Rot_Cntd: DS 1 ; Initial run rotations counter (decrementing)
Stall_Cnt: DS 1 ; Counts start/run attempts that resulted in stall. Reset upon a proper stop
Demag_Detected_Metric: DS 1 ; Metric used to gauge demag event frequency
Demag_Pwr_Off_Thresh: DS 1 ; Metric threshold above which power is cut
Low_Rpm_Pwr_Slope: DS 1 ; Sets the slope of power increase for low rpms
Timer0_X: DS 1 ; Timer 0 extended byte
Timer2_X: DS 1 ; Timer 2 extended byte
Prev_Comm_L: DS 1 ; Previous commutation timer3 timestamp (lo byte)
Prev_Comm_H: DS 1 ; Previous commutation timer3 timestamp (hi byte)
Prev_Comm_X: DS 1 ; Previous commutation timer3 timestamp (ext byte)
Prev_Prev_Comm_L: DS 1 ; Pre-previous commutation timer3 timestamp (lo byte)
Prev_Prev_Comm_H: DS 1 ; Pre-previous commutation timer3 timestamp (hi byte)
Comm_Period4x_L: DS 1 ; Timer3 counts between the last 4 commutations (lo byte)
Comm_Period4x_H: DS 1 ; Timer3 counts between the last 4 commutations (hi byte)
Comparator_Read_Cnt: DS 1 ; Number of comparator reads done
Wt_Adv_Start_L: DS 1 ; Timer3 start point for commutation advance timing (lo byte)
Wt_Adv_Start_H: DS 1 ; Timer3 start point for commutation advance timing (hi byte)
Wt_Zc_Scan_Start_L: DS 1 ; Timer3 start point from commutation to zero cross scan (lo byte)
Wt_Zc_Scan_Start_H: DS 1 ; Timer3 start point from commutation to zero cross scan (hi byte)
Wt_Zc_Tout_Start_L: DS 1 ; Timer3 start point for zero cross scan timeout (lo byte)
Wt_Zc_Tout_Start_H: DS 1 ; Timer3 start point for zero cross scan timeout (hi byte)
Wt_Comm_Start_L: DS 1 ; Timer3 start point from zero cross to commutation (lo byte)
Wt_Comm_Start_H: DS 1 ; Timer3 start point from zero cross to commutation (hi byte)
New_Rcp: DS 1 ; New RC pulse value in pca counts
Rcp_Stop_Cnt: DS 1 ; Counter for RC pulses below stop value
Power_Pwm_Reg_L: DS 1 ; Power pwm register setting (lo byte)
Power_Pwm_Reg_H: DS 1 ; Power pwm register setting (hi byte). 0x3F is minimum power
Damp_Pwm_Reg_L: DS 1 ; Damping pwm register setting (lo byte)
Damp_Pwm_Reg_H: DS 1 ; Damping pwm register setting (hi byte)
Current_Power_Pwm_Reg_H: DS 1 ; Current power pwm register setting that is loaded in the PCA register (hi byte)
Pwm_Limit: DS 1 ; Maximum allowed pwm
Pwm_Limit_By_Rpm: DS 1 ; Maximum allowed pwm for low or high rpms
Pwm_Limit_Beg: DS 1 ; Initial pwm limit
Adc_Conversion_Cnt: DS 1 ; Adc conversion counter
Current_Average_Temp: DS 1 ; Current average temperature (lo byte ADC reading, assuming hi byte is 1)
Throttle_Gain: DS 1 ; Gain to be applied to RCP value
Throttle_Gain_M: DS 1 ; Gain to be applied to RCP value (multiplier 0=1x, 1=2x, 2=4x etc))
Throttle_Gain_BD_Rev: DS 1 ; Gain to be applied to RCP value for reverse direction in bidirectional mode
Throttle_Gain_BD_Rev_M: DS 1 ; Gain to be applied to RCP value for reverse direction in bidirectional mode (multiplier 0=1x, 1=2x, 2=4x etc)
Beep_Strength: DS 1 ; Strength of beeps
Skip_T2_Int: DS 1 ; Set for 48MHz MCUs when timer 2 interrupt shall be ignored
Clock_Set_At_48MHz: DS 1 ; Variable set if 48MHz MCUs run at 48MHz
Flash_Key_1: DS 1 ; Flash key one
Flash_Key_2: DS 1 ; Flash key two
Temp_Prot_Limit: DS 1 ; Temperature protection limit
; Indirect addressing data segment. The variables below must be in this sequence
ISEG AT 080h
_Pgm_Gov_P_Gain: DS 1 ; Programmed governor P gain
_Pgm_Gov_I_Gain: DS 1 ; Programmed governor I gain
_Pgm_Gov_Mode: DS 1 ; Programmed governor mode
_Pgm_Low_Voltage_Lim: DS 1 ; Programmed low voltage limit
_Pgm_Motor_Gain: DS 1 ; Programmed motor gain
_Pgm_Motor_Idle: DS 1 ; Programmed motor idle speed
Pgm_Startup_Pwr: DS 1 ; Programmed startup power
_Pgm_Pwm_Freq: DS 1 ; Programmed pwm frequency
Pgm_Direction: DS 1 ; Programmed rotation direction
Pgm_Input_Pol: DS 1 ; Programmed input pwm polarity
Initialized_L_Dummy: DS 1 ; Place holder
Initialized_H_Dummy: DS 1 ; Place holder
Pgm_Enable_TX_Program: DS 1 ; Programmed enable/disable value for TX programming
_Pgm_Main_Rearm_Start: DS 1 ; Programmed enable/disable re-arming main every start
_Pgm_Gov_Setup_Target: DS 1 ; Programmed main governor setup target
_Pgm_Startup_Rpm: DS 1 ; Programmed startup rpm (unused - place holder)
_Pgm_Startup_Accel: DS 1 ; Programmed startup acceleration (unused - place holder)
_Pgm_Volt_Comp: DS 1 ; Place holder
Pgm_Comm_Timing: DS 1 ; Programmed commutation timing
_Pgm_Damping_Force: DS 1 ; Programmed damping force (unused - place holder)
_Pgm_Gov_Range: DS 1 ; Programmed governor range
_Pgm_Startup_Method: DS 1 ; Programmed startup method (unused - place holder)
Pgm_Min_Throttle: DS 1 ; Programmed throttle minimum
Pgm_Max_Throttle: DS 1 ; Programmed throttle maximum
Pgm_Beep_Strength: DS 1 ; Programmed beep strength
Pgm_Beacon_Strength: DS 1 ; Programmed beacon strength
Pgm_Beacon_Delay: DS 1 ; Programmed beacon delay
_Pgm_Throttle_Rate: DS 1 ; Programmed throttle rate (unused - place holder)
Pgm_Demag_Comp: DS 1 ; Programmed demag compensation
_Pgm_BEC_Voltage_High: DS 1 ; Programmed BEC voltage
Pgm_Center_Throttle: DS 1 ; Programmed throttle center (in bidirectional mode)
_Pgm_Main_Spoolup_Time: DS 1 ; Programmed main spoolup time
Pgm_Enable_Temp_Prot: DS 1 ; Programmed temperature protection enable
Pgm_Enable_Power_Prot: DS 1 ; Programmed low rpm power protection enable
_Pgm_Enable_Pwm_Input: DS 1 ; Programmed PWM input signal enable
_Pgm_Pwm_Dither: DS 1 ; Programmed output PWM dither
Pgm_Brake_On_Stop: DS 1 ; Programmed braking when throttle is zero
Pgm_LED_Control: DS 1 ; Programmed LED control
; The sequence of the variables below is no longer of importance
Pgm_Startup_Pwr_Decoded: DS 1 ; Programmed startup power decoded
; Indirect addressing data segment
ISEG AT 0D0h
Tag_Temporary_Storage: DS 48 ; Temporary storage for tags when updating "Eeprom"
;**** **** **** **** ****
CSEG AT 1A00h ; "Eeprom" segment
EEPROM_FW_MAIN_REVISION EQU 16 ; Main revision of the firmware
EEPROM_FW_SUB_REVISION EQU 3 ; Sub revision of the firmware
EEPROM_LAYOUT_REVISION EQU 33 ; Revision of the EEPROM layout
Eep_FW_Main_Revision: DB EEPROM_FW_MAIN_REVISION ; EEPROM firmware main revision number
Eep_FW_Sub_Revision: DB EEPROM_FW_SUB_REVISION ; EEPROM firmware sub revision number
Eep_Layout_Revision: DB EEPROM_LAYOUT_REVISION ; EEPROM layout revision number
_Eep_Pgm_Gov_P_Gain: DB 0FFh
_Eep_Pgm_Gov_I_Gain: DB 0FFh
_Eep_Pgm_Gov_Mode: DB 0FFh
_Eep_Pgm_Low_Voltage_Lim: DB 0FFh
_Eep_Pgm_Motor_Gain: DB 0FFh
_Eep_Pgm_Motor_Idle: DB 0FFh
Eep_Pgm_Startup_Pwr: DB DEFAULT_PGM_STARTUP_PWR ; EEPROM copy of programmed startup power
_Eep_Pgm_Pwm_Freq: DB 0FFh
Eep_Pgm_Direction: DB DEFAULT_PGM_DIRECTION ; EEPROM copy of programmed rotation direction
_Eep_Pgm_Input_Pol: DB 0FFh
Eep_Initialized_L: DB 055h ; EEPROM initialized signature low byte
Eep_Initialized_H: DB 0AAh ; EEPROM initialized signature high byte
Eep_Enable_TX_Program: DB DEFAULT_PGM_ENABLE_TX_PROGRAM ; EEPROM TX programming enable
_Eep_Main_Rearm_Start: DB 0FFh
_Eep_Pgm_Gov_Setup_Target: DB 0FFh
_Eep_Pgm_Startup_Rpm: DB 0FFh
_Eep_Pgm_Startup_Accel: DB 0FFh
_Eep_Pgm_Volt_Comp: DB 0FFh
Eep_Pgm_Comm_Timing: DB DEFAULT_PGM_COMM_TIMING ; EEPROM copy of programmed commutation timing
_Eep_Pgm_Damping_Force: DB 0FFh
_Eep_Pgm_Gov_Range: DB 0FFh
_Eep_Pgm_Startup_Method: DB 0FFh
Eep_Pgm_Min_Throttle: DB DEFAULT_PGM_MIN_THROTTLE ; EEPROM copy of programmed minimum throttle
Eep_Pgm_Max_Throttle: DB DEFAULT_PGM_MAX_THROTTLE ; EEPROM copy of programmed minimum throttle
Eep_Pgm_Beep_Strength: DB DEFAULT_PGM_BEEP_STRENGTH ; EEPROM copy of programmed beep strength
Eep_Pgm_Beacon_Strength: DB DEFAULT_PGM_BEACON_STRENGTH ; EEPROM copy of programmed beacon strength
Eep_Pgm_Beacon_Delay: DB DEFAULT_PGM_BEACON_DELAY ; EEPROM copy of programmed beacon delay
_Eep_Pgm_Throttle_Rate: DB 0FFh
Eep_Pgm_Demag_Comp: DB DEFAULT_PGM_DEMAG_COMP ; EEPROM copy of programmed demag compensation
_Eep_Pgm_BEC_Voltage_High: DB 0FFh
Eep_Pgm_Center_Throttle: DB DEFAULT_PGM_CENTER_THROTTLE ; EEPROM copy of programmed center throttle
_Eep_Pgm_Main_Spoolup_Time: DB 0FFh
Eep_Pgm_Temp_Prot_Enable: DB DEFAULT_PGM_ENABLE_TEMP_PROT ; EEPROM copy of programmed temperature protection enable
Eep_Pgm_Enable_Power_Prot: DB DEFAULT_PGM_ENABLE_POWER_PROT ; EEPROM copy of programmed low rpm power protection enable
_Eep_Pgm_Enable_Pwm_Input: DB 0FFh
_Eep_Pgm_Pwm_Dither: DB 0FFh
Eep_Pgm_Brake_On_Stop: DB DEFAULT_PGM_BRAKE_ON_STOP ; EEPROM copy of programmed braking when throttle is zero
Eep_Pgm_LED_Control: DB DEFAULT_PGM_LED_CONTROL ; EEPROM copy of programmed LED control
Eep_Dummy: DB 0FFh ; EEPROM address for safety reason
CSEG AT 1A60h
Eep_Name: DB " " ; Name tag (16 Bytes)
;**** **** **** **** ****
Interrupt_Table_Definition ; SiLabs interrupts
CSEG AT 80h ; Code segment after interrupt vectors
;**** **** **** **** ****
; Table definitions
STARTUP_POWER_TABLE: DB 04h, 06h, 08h, 0Ch, 10h, 18h, 20h, 30h, 40h, 60h, 80h, 0A0h, 0C0h
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Timer0 interrupt routine
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
IF MCU_48MHZ == 1
t0_int:
clr TCON_TF0 ; Clear interrupt flag
inc Timer0_X
reti
ENDIF
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Timer2 interrupt routine
;
; No assumptions
; Requirements: Temp variables can NOT be used since PSW.x is not set
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
t2_int: ; Happens every 32ms
push PSW ; Preserve registers through interrupt
push ACC
clr TMR2CN0_TF2H ; Clear interrupt flag
inc Timer2_X
IF MCU_48MHZ == 1
mov A, Clock_Set_At_48MHz
jz t2_int_start
; Check skip variable
mov A, Skip_T2_Int
jz t2_int_start ; Execute this interrupt
mov Skip_T2_Int, #0
ajmp t2_int_exit
t2_int_start:
mov Skip_T2_Int, #1 ; Skip next interrupt
ENDIF
; Update RC pulse timeout counter
mov A, Rcp_Timeout_Cntd ; RC pulse timeout count zero?
jz t2_int_exit ; Yes - do not decrement
dec Rcp_Timeout_Cntd ; No decrement
t2_int_exit:
pop ACC ; Restore preserved registers
pop PSW
reti
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Timer3 interrupt routine
;
; No assumptions
; Requirements: Temp variables can NOT be used since PSW.x is not set
; ACC can not be used, as it is not pushed to stack
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
t3_int: ; Used for commutation timing
clr IE_EA ; Disable all interrupts
anl EIE1, #7Fh ; Disable timer3 interrupts
mov TMR3RLL, #0FAh ; Set a short delay before next interrupt
mov TMR3RLH, #0FFh
clr Flags0.T3_PENDING ; Flag that timer has wrapped
anl TMR3CN0, #07Fh ; Timer3 interrupt flag cleared
setb IE_EA ; Enable all interrupts
reti
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Int0 interrupt routine
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
int0_int: ; Used for RC pulse timing
clr IE_EA
anl EIE1, #0EFh ; Disable pca interrupts
push PSW ; Preserve registers through interrupt
push ACC
push B
setb PSW.3 ; Select register bank 1 for this interrupt
setb IE_EA
; Get the counter values
Get_Rcp_Capture_Values
; Scale down to 10 bits (for 24MHz, and 11 bits for 48MHz)
jnb Flags2.RCP_MULTISHOT, int0_int_fall_not_multishot
; Multishot - Multiply by 2 and add 1/16 and 1/32
mov A, Temp1 ; Divide by 16
swap A
anl A, #0Fh
mov Temp3, A
mov A, Temp2
swap A
anl A, #0F0h
orl A, Temp3
mov Temp3, A
clr C ; Make divided by 32
rrc A
add A, Temp3 ; Add 1/16 to 1/32
mov Temp3, A
clr C ; Multiply by 2
mov A, Temp1
rlc A
mov Temp1, A
mov A, Temp2
rlc A
mov Temp2, A
mov A, Temp1 ; Add 1/16 and 1/32
add A, Temp3
mov Temp3, A
mov A, Temp2
IF MCU_48MHZ == 0
addc A, #03h ; Add to low end, to make signal look like 20-40us
ELSE
addc A, #06h
ENDIF
mov Temp4, A
ajmp int0_int_fall_gain_done
int0_int_fall_not_multishot:
jnb Flags2.RCP_ONESHOT42, int0_int_fall_not_oneshot_42
; Oneshot42 - Add 2/256
clr C
mov A, Temp1
rlc A
mov A, Temp2
rlc A
mov Temp3, A
mov A, Temp1
add A, Temp3
mov Temp3, A
mov A, Temp2
addc A, #0
mov Temp4, A
ajmp int0_int_fall_gain_done
int0_int_fall_not_oneshot_42:
jnb Flags2.RCP_ONESHOT125, int0_int_fall_not_oneshot_125
; Oneshot125 - multiply by 86/256
mov A, Temp1 ; Multiply by 86 and divide by 256
mov B, #56h
mul AB
mov Temp3, B
mov A, Temp2
mov B, #56h
mul AB
add A, Temp3
mov Temp3, A
xch A, B
addc A, #0
mov Temp4, A
ajmp int0_int_fall_gain_done
int0_int_fall_not_oneshot_125:
; Regular signal - multiply by 43/1024
IF MCU_48MHZ == 1
clr C
mov A, Temp3 ; Divide by 2
rrc A
mov Temp3, A
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
ENDIF
mov A, Temp1 ; Multiply by 43 and divide by 1024
IF MCU_48MHZ == 0
mov B, #2Bh
ELSE
mov B, #56h ; Multiply by 86
ENDIF
mul AB
mov Temp3, B
mov A, Temp2
IF MCU_48MHZ == 0
mov B, #2Bh
ELSE
mov B, #56h ; Multiply by 86
ENDIF
mul AB
add A, Temp3
mov Temp3, A
xch A, B
addc A, #0
clr C
rrc A ; Divide by 2 for total 512
mov Temp4, A
mov A, Temp3
rrc A
mov Temp3, A
clr C
mov A, Temp4 ; Divide by 2 for total 1024
rrc A
mov Temp4, A
mov A, Temp3
rrc A
mov Temp3, A
int0_int_fall_gain_done:
; Check if 2235us or above (in order to ignore false pulses)
clr C
mov A, Temp4 ; Is pulse 2235us or higher?
IF MCU_48MHZ == 0
subb A, #09h
ELSE
subb A, #12h
ENDIF
jnc int0_int_outside_range ; Yes - ignore pulse
; Check if below 745us (in order to ignore false pulses)
clr C
mov A, Temp4 ; Is pulse below 745us?
IF MCU_48MHZ == 0
subb A, #03h
ELSE
subb A, #06h
ENDIF
jnc int0_int_check_full_range ; No - proceed
int0_int_outside_range:
inc Rcp_Outside_Range_Cnt
mov A, Rcp_Outside_Range_Cnt
jnz ($+4)
dec Rcp_Outside_Range_Cnt
clr C
mov A, Rcp_Outside_Range_Cnt
subb A, #10 ; Allow a given number of outside pulses
jnc ($+4)
ajmp int0_int_set_timeout ; If outside limits - ignore pulse
mov New_Rcp, #0 ; Set pulse length to zero
mov Temp3, #0
mov Temp4, #0
ajmp int0_int_set_pwm_registers
int0_int_check_full_range:
; Decrement outside range counter
mov A, Rcp_Outside_Range_Cnt
jz ($+4)
dec Rcp_Outside_Range_Cnt
; Calculate "1000us" plus throttle minimum
jnb Flags2.RCP_FULL_RANGE, int0_int_set_min ; Check if full range is chosen
mov Temp5, #0 ; Set 1000us as default minimum
IF MCU_48MHZ == 0
mov Temp6, #4
ELSE
mov Temp6, #8
ENDIF
ajmp int0_int_calculate
int0_int_set_min:
mov Temp5, Min_Throttle_L ; Min throttle value scaled
mov Temp6, Min_Throttle_H
jnb Flags3.PGM_BIDIR, ($+7)
mov Temp5, Center_Throttle_L ; Center throttle value scaled
mov Temp6, Center_Throttle_H
int0_int_calculate:
clr C
mov A, Temp3 ; Subtract minimum
subb A, Temp5
mov Temp3, A
mov A, Temp4
subb A, Temp6
mov Temp4, A
mov Bit_Access_Int.0, C
mov Temp7, Throttle_Gain ; Load Temp7/Temp8 with throttle gain
mov Temp8, Throttle_Gain_M
jnb Flags3.PGM_BIDIR, int0_int_not_bidir ; If not bidirectional operation - branch
jnc int0_int_bidir_fwd ; If result is positive - branch
int0_int_bidir_rev:
jb Flags2.RCP_DIR_REV, int0_int_bidir_rev_chk ; If same direction - branch
setb Flags2.RCP_DIR_REV
ajmp int0_int_bidir_rev_chk
int0_int_bidir_fwd:
jnb Flags2.RCP_DIR_REV, int0_int_bidir_rev_chk ; If same direction - branch
clr Flags2.RCP_DIR_REV
int0_int_bidir_rev_chk:
jnb Flags2.RCP_DIR_REV, ($+7)
mov Temp7, Throttle_Gain_BD_Rev ; Load Temp7/Temp8 with throttle gain for bidirectional reverse
mov Temp8, Throttle_Gain_BD_Rev_M
jb Flags3.PGM_BIDIR_REV, ($+5)
cpl Flags2.RCP_DIR_REV
clr C ; Multiply throttle value by 2
mov A, Temp3
rlc A
mov Temp3, A
mov A, Temp4
rlc A
mov Temp4, A
mov C, Bit_Access_Int.0
jnc int0_int_bidir_do_deadband ; If result is positive - branch
mov A, Temp3 ; Change sign
cpl A
add A, #1
mov Temp3, A
mov A, Temp4
cpl A
addc A, #0
mov Temp4, A
int0_int_bidir_do_deadband:
clr C ; Subtract deadband
mov A, Temp3
IF MCU_48MHZ == 0
subb A, #40
ELSE
subb A, #80
ENDIF
mov Temp3, A
mov A, Temp4
subb A, #0
mov Temp4, A
jnc int0_int_do_throttle_gain
mov Temp1, #0
mov Temp3, #0
mov Temp4, #0
ajmp int0_int_do_throttle_gain
int0_int_not_bidir:
mov C, Bit_Access_Int.0
jnc int0_int_do_throttle_gain ; If result is positive - branch
int0_int_unidir_neg:
mov Temp1, #0 ; Yes - set to minimum
mov Temp3, #0
mov Temp4, #0
ajmp int0_int_pulse_ready
int0_int_do_throttle_gain:
; Boost pwm during direct start
mov A, Flags1
anl A, #((1 SHL STARTUP_PHASE)+(1 SHL INITIAL_RUN_PHASE))
jz int0_int_startup_boosted
jb Flags1.MOTOR_STARTED, int0_int_startup_boosted ; Do not boost when changing direction in bidirectional mode
mov A, Pwm_Limit_Beg ; Set 25% of max startup power as minimum power
IF MCU_48MHZ == 1
rlc A
ENDIF
mov Temp2, A
mov A, Temp4
jnz int0_int_startup_boost_stall
clr C
mov A, Temp2
subb A, Temp3
jc int0_int_startup_boost_stall
mov A, Temp2
mov Temp3, A
int0_int_startup_boost_stall:
mov A, Stall_Cnt ; Add an extra power boost during start
swap A
IF MCU_48MHZ == 1
rlc A
ENDIF
add A, Temp3
mov Temp3, A
mov A, Temp4
addc A, #0
mov Temp4, A
int0_int_startup_boosted:
mov A, Temp3 ; Multiply throttle value by throttle gain
mov B, Temp7 ; Temp7 has Throttle_Gain
mul AB
mov Temp2, A
mov Temp3, B
mov A, Temp4
mov B, Temp7 ; Temp7 has Throttle_Gain
mul AB
add A, Temp3
mov Temp3, A
xch A, B
addc A, #0
mov Temp4, A
clr C ; Generate 8bit number
mov A, Temp4
rrc A
mov Temp6, A
mov A, Temp3
rrc A
mov Temp1, A
IF MCU_48MHZ == 1
clr C
mov A, Temp6
rrc A
mov Temp6, A
mov A, Temp1
rrc A
mov Temp1, A
ENDIF
inc Temp8 ; Temp8 has Throttle_Gain_M
int0_int_gain_loop:
mov A, Temp8
dec A
jz int0_int_gain_rcp_done ; Skip one multiply by 2 of New_Rcp
clr C
mov A, Temp1 ; Multiply New_Rcp by 2
rlc A
mov Temp1, A
int0_int_gain_rcp_done:
clr C
mov A, Temp2 ; Multiply pwm by 2
rlc A
mov A, Temp3
rlc A
mov Temp3, A
mov A, Temp4
rlc A
mov Temp4, A
djnz Temp8, int0_int_gain_loop
mov A, Temp4
IF MCU_48MHZ == 0
jnb ACC.2, int0_int_pulse_ready ; Check that RC pulse is within legal range
ELSE
jnb ACC.3, int0_int_pulse_ready
ENDIF
mov Temp1, #0FFh
mov Temp3, #0FFh
IF MCU_48MHZ == 0
mov Temp4, #3
ELSE
mov Temp4, #7
ENDIF
int0_int_pulse_ready:
mov New_Rcp, Temp1 ; Store new pulse length
setb Flags2.RCP_UPDATED ; Set updated flag
; Set pwm limit
clr C
mov A, Pwm_Limit ; Limit to the smallest
mov Temp5, A ; Store limit in Temp5
subb A, Pwm_Limit_By_Rpm
jc ($+4)
mov Temp5, Pwm_Limit_By_Rpm
; Check against limit
clr C
mov A, Temp5
subb A, New_Rcp
jnc int0_int_set_pwm_registers
mov A, Temp5 ; Multiply limit by 4 (8 for 48MHz MCUs)
IF MCU_48MHZ == 0
mov B, #4
ELSE
mov B, #8
ENDIF
mul AB
mov Temp3, A
mov Temp4, B
int0_int_set_pwm_registers:
mov A, Temp3
cpl A
mov Temp1, A
mov A, Temp4
cpl A
IF MCU_48MHZ == 0
anl A, #3
ELSE
anl A, #7
ENDIF
mov Temp2, A
IF FETON_DELAY != 0
clr C
mov A, Temp1 ; Skew damping fet timing
IF MCU_48MHZ == 0
subb A, #FETON_DELAY
ELSE
subb A, #(FETON_DELAY SHL 1)
ENDIF
mov Temp3, A
mov A, Temp2
subb A, #0
mov Temp4, A
jnc int0_int_set_pwm_damp_set
mov Temp3, #0
mov Temp4, #0
int0_int_set_pwm_damp_set:
ENDIF
mov Power_Pwm_Reg_L, Temp1
mov Power_Pwm_Reg_H, Temp2
IF FETON_DELAY != 0
mov Damp_Pwm_Reg_L, Temp3
mov Damp_Pwm_Reg_H, Temp4
ENDIF
mov Rcp_Timeout_Cntd, #10 ; Set timeout count
IF FETON_DELAY != 0
pop B ; Restore preserved registers
pop ACC
pop PSW
Clear_COVF_Interrupt
Enable_COVF_Interrupt ; Generate a pca interrupt
orl EIE1, #10h ; Enable pca interrupts
reti
ELSE
mov A, Current_Power_Pwm_Reg_H
IF MCU_48MHZ == 0
jnb ACC.1, int0_int_set_pca_int_hi_pwm
ELSE
jnb ACC.2, int0_int_set_pca_int_hi_pwm
ENDIF
pop B ; Restore preserved registers
pop ACC
pop PSW
Clear_COVF_Interrupt
Enable_COVF_Interrupt ; Generate a pca interrupt
orl EIE1, #10h ; Enable pca interrupts
reti
int0_int_set_pca_int_hi_pwm:
pop B ; Restore preserved registers
pop ACC
pop PSW
Clear_CCF_Interrupt
Enable_CCF_Interrupt ; Generate pca interrupt
orl EIE1, #10h ; Enable pca interrupts
reti
ENDIF
int0_int_set_timeout:
mov Rcp_Timeout_Cntd, #10 ; Set timeout count
pop B ; Restore preserved registers
pop ACC
pop PSW
orl EIE1, #10h ; Enable pca interrupts
reti
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; PCA interrupt routine
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
pca_int: ; Used for setting pwm registers
clr IE_EA
anl IE, #0FEh ; Disable int0 interrupts
push PSW ; Preserve registers through interrupt
push ACC
setb PSW.3 ; Select register bank 1 for this interrupt
IF FETON_DELAY != 0 ; HI/LO enable style drivers
mov Temp1, PCA0L ; Read low byte, to transfer high byte to holding register
mov A, Current_Power_Pwm_Reg_H
IF MCU_48MHZ == 0
jnb ACC.1, pca_int_hi_pwm
ELSE
jnb ACC.2, pca_int_hi_pwm
ENDIF
mov A, PCA0H
IF MCU_48MHZ == 0
jb ACC.1, pca_int_exit ; Power below 50%, update pca in the 0x00-0x0F range
jb ACC.0, pca_int_exit
ELSE
jb ACC.2, pca_int_exit
jb ACC.1, pca_int_exit
ENDIF
ajmp pca_int_set_pwm
pca_int_hi_pwm:
mov A, PCA0H
IF MCU_48MHZ == 0
jnb ACC.1, pca_int_exit ; Power above 50%, update pca in the 0x20-0x2F range
jb ACC.0, pca_int_exit
ELSE
jnb ACC.2, pca_int_exit
jb ACC.1, pca_int_exit
ENDIF
pca_int_set_pwm:
Set_Power_Pwm_Regs
Set_Damp_Pwm_Regs
mov Current_Power_Pwm_Reg_H, Power_Pwm_Reg_H
Disable_COVF_Interrupt
ELSE ; EN/PWM style drivers
Set_Power_Pwm_Regs
mov Current_Power_Pwm_Reg_H, Power_Pwm_Reg_H
Disable_COVF_Interrupt
Disable_CCF_Interrupt
ENDIF
; Check RC pulse against stop value
clr C
mov A, New_Rcp ; Load new pulse value
subb A, #1 ; Check if pulse is below stop value
jc pca_int_rcp_stop
; RC pulse higher than stop value, reset stop counter
mov Rcp_Stop_Cnt, #0 ; Reset rcp stop counter
ajmp pca_int_exit
pca_int_rcp_stop:
; RC pulse less than stop value
mov A, Rcp_Stop_Cnt ; Increment stop counter
add A, #1
mov Rcp_Stop_Cnt, A
jnc ($+5) ; Branch if counter has not wrapped
mov Rcp_Stop_Cnt, #0FFh ; Set stop counter to max
pca_int_exit:
Clear_COVF_Interrupt
IF FETON_DELAY == 0
Clear_CCF_Interrupt
ENDIF
pop ACC ; Restore preserved registers
pop PSW
orl IE, #01h ; Enable int0 interrupts
setb IE_EA
reti
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait xms ~(x*4*250) (Different entry points)
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait1ms:
mov Temp2, #1
jmp waitxms_o
wait3ms:
mov Temp2, #3
jmp waitxms_o
wait10ms:
mov Temp2, #10
jmp waitxms_o
wait30ms:
mov Temp2, #30
jmp waitxms_o
wait100ms:
mov Temp2, #100
jmp waitxms_o
wait200ms:
mov Temp2, #200
jmp waitxms_o
waitxms_o: ; Outer loop
mov Temp1, #23
waitxms_m: ; Middle loop
clr A
djnz ACC, $ ; Inner loop (42.7us - 1024 cycles)
djnz Temp1, waitxms_m
djnz Temp2, waitxms_o
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Beeper routines (4 different entry points)
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
beep_f1: ; Entry point 1, load beeper frequency 1 settings
mov Temp3, #20 ; Off wait loop length
mov Temp4, #120 ; Number of beep pulses
jmp beep
beep_f2: ; Entry point 2, load beeper frequency 2 settings
mov Temp3, #16
mov Temp4, #140
jmp beep
beep_f3: ; Entry point 3, load beeper frequency 3 settings
mov Temp3, #13
mov Temp4, #180
jmp beep
beep_f4: ; Entry point 4, load beeper frequency 4 settings
mov Temp3, #11
mov Temp4, #200
jmp beep
beep: ; Beep loop start
mov A, Beep_Strength
djnz ACC, beep_start
ret
beep_start:
mov Temp2, #2
beep_onoff:
clr A
BcomFET_off ; BcomFET off
djnz ACC, $ ; Allow some time after comfet is turned off
BpwmFET_on ; BpwmFET on (in order to charge the driver of the BcomFET)
djnz ACC, $ ; Let the pwmfet be turned on a while
BpwmFET_off ; BpwmFET off again
djnz ACC, $ ; Allow some time after pwmfet is turned off
BcomFET_on ; BcomFET on
djnz ACC, $ ; Allow some time after comfet is turned on
; Turn on pwmfet
mov A, Temp2
jb ACC.0, beep_apwmfet_on
ApwmFET_on ; ApwmFET on
beep_apwmfet_on:
jnb ACC.0, beep_cpwmfet_on
CpwmFET_on ; CpwmFET on
beep_cpwmfet_on:
mov A, Beep_Strength
djnz ACC, $
; Turn off pwmfet
mov A, Temp2
jb ACC.0, beep_apwmfet_off
ApwmFET_off ; ApwmFET off
beep_apwmfet_off:
jnb ACC.0, beep_cpwmfet_off
CpwmFET_off ; CpwmFET off
beep_cpwmfet_off:
mov A, #150 ; 25µs off
djnz ACC, $
djnz Temp2, beep_onoff
; Copy variable
mov A, Temp3
mov Temp1, A
beep_off: ; Fets off loop
djnz ACC, $
djnz Temp1, beep_off
djnz Temp4, beep
BcomFET_off ; BcomFET off
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Set pwm limit low rpm
;
; No assumptions
;
; Sets power limit for low rpms and disables demag for low rpms
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
set_pwm_limit_low_rpm:
; Set pwm limit and demag disable for low rpms
mov Temp1, #0FFh ; Default full power
jb Flags1.STARTUP_PHASE, set_pwm_limit_low_rpm_exit ; Exit if startup phase set
mov Temp2, #Pgm_Enable_Power_Prot ; Check if low RPM power protection is enabled
mov A, @Temp2
jz set_pwm_limit_low_rpm_exit ; Exit if disabled
mov A, Comm_Period4x_H
jz set_pwm_limit_low_rpm_exit ; Avoid divide by zero
mov A, #255 ; Divide 255 by Comm_Period4x_H
mov B, Comm_Period4x_H
div AB
mov B, Low_Rpm_Pwr_Slope ; Multiply by slope
jnb Flags1.INITIAL_RUN_PHASE, ($+6) ; More protection for initial run phase
mov B, #5
mul AB
mov Temp1, A ; Set new limit
xch A, B
jz ($+4) ; Limit to max
mov Temp1, #0FFh
clr C
mov A, Temp1 ; Limit to min
subb A, Pwm_Limit_Beg
jnc set_pwm_limit_low_rpm_exit
mov Temp1, Pwm_Limit_Beg
set_pwm_limit_low_rpm_exit:
mov Pwm_Limit_By_Rpm, Temp1
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Set pwm limit high rpm
;
; No assumptions
;
; Sets power limit for high rpms
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
set_pwm_limit_high_rpm:
IF MCU_48MHZ == 1
clr C
mov A, Comm_Period4x_L
subb A, #0A0h ; Limit Comm_Period to 160, which is 500k erpm
mov A, Comm_Period4x_H
subb A, #00h
ELSE
clr C
mov A, Comm_Period4x_L
subb A, #0E4h ; Limit Comm_Period to 228, which is 350k erpm
mov A, Comm_Period4x_H
subb A, #00h
ENDIF
mov A, Pwm_Limit_By_Rpm
jnc set_pwm_limit_high_rpm_inc_limit
dec A
ajmp set_pwm_limit_high_rpm_store
set_pwm_limit_high_rpm_inc_limit:
inc A
set_pwm_limit_high_rpm_store:
jz ($+4)
mov Pwm_Limit_By_Rpm, A
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Start ADC conversion
;
; No assumptions
;
; Start conversion used for measuring power supply voltage
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
start_adc_conversion:
; Start adc
Start_Adc
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Check temperature, power supply voltage and limit power
;
; No assumptions
;
; Used to limit main motor power in order to maintain the required voltage
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
check_temp_voltage_and_limit_power:
inc Adc_Conversion_Cnt ; Increment conversion counter
clr C
mov A, Adc_Conversion_Cnt ; Is conversion count equal to temp rate?
subb A, #8
jc check_voltage_start ; No - check voltage
; Wait for ADC conversion to complete
jnb ADC0CN0_ADINT, check_temp_voltage_and_limit_power
; Read ADC result
Read_Adc_Result
; Stop ADC
Stop_Adc
mov Adc_Conversion_Cnt, #0 ; Yes - temperature check. Reset counter
mov A, Temp2 ; Move ADC MSB to Temp3
mov Temp3, A
mov Temp2, #Pgm_Enable_Temp_Prot ; Is temp protection enabled?
mov A, @Temp2
jz temp_check_exit ; No - branch
mov A, Temp3 ; Is temperature reading below 256?
jnz temp_average_inc_dec ; No - proceed
mov A, Current_Average_Temp ; Yes - decrement average
jz temp_average_updated ; Already zero - no change
jmp temp_average_dec ; Decrement
temp_average_inc_dec:
clr C
mov A, Temp1 ; Check if current temperature is above or below average
subb A, Current_Average_Temp
jz temp_average_updated_load_acc ; Equal - no change
mov A, Current_Average_Temp ; Above - increment average
jnc temp_average_inc
jz temp_average_updated ; Below - decrement average if average is not already zero
temp_average_dec:
dec A ; Decrement average
jmp temp_average_updated
temp_average_inc:
inc A ; Increment average
jz temp_average_dec
jmp temp_average_updated
temp_average_updated_load_acc:
mov A, Current_Average_Temp
temp_average_updated:
mov Current_Average_Temp, A
clr C
subb A, Temp_Prot_Limit ; Is temperature below first limit?
jc temp_check_exit ; Yes - exit
mov Pwm_Limit, #192 ; No - limit pwm
clr C
subb A, #(TEMP_LIMIT_STEP/2) ; Is temperature below second limit
jc temp_check_exit ; Yes - exit
mov Pwm_Limit, #128 ; No - limit pwm
clr C
subb A, #(TEMP_LIMIT_STEP/2) ; Is temperature below third limit
jc temp_check_exit ; Yes - exit
mov Pwm_Limit, #64 ; No - limit pwm
clr C
subb A, #(TEMP_LIMIT_STEP/2) ; Is temperature below final limit
jc temp_check_exit ; Yes - exit
mov Pwm_Limit, #0 ; No - limit pwm
temp_check_exit:
ret
check_voltage_start:
; Increase pwm limit
mov A, Pwm_Limit
add A, #16
jnc ($+4) ; If not max - branch
mov A, #255
mov Pwm_Limit, A ; Increment limit
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Set startup PWM routine
;
; Either the SETTLE_PHASE or the STEPPER_PHASE flag must be set
;
; Used for pwm control during startup
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
set_startup_pwm:
; Adjust startup power
mov A, #50 ; Set power
mov Temp2, #Pgm_Startup_Pwr_Decoded
mov B, @Temp2
mul AB
xch A, B
mov C, B.7 ; Multiply result by 2 (unity gain is 128)
rlc A
mov Temp1, A ; Transfer to Temp1
clr C
mov A, Temp1 ; Check against limit
subb A, Pwm_Limit
jc startup_pwm_set_pwm ; If pwm below limit - branch
mov Temp1, Pwm_Limit ; Limit pwm
startup_pwm_set_pwm:
mov Pwm_Limit_Beg, Temp1 ; Set initial pwm limit
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Initialize timing routine
;
; No assumptions
;
; Part of initialization before motor start
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
initialize_timing:
mov Comm_Period4x_L, #00h ; Set commutation period registers
mov Comm_Period4x_H, #0F0h
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Calculate next commutation timing routine
;
; No assumptions
;
; Called immediately after each commutation
; Also sets up timer 3 to wait advance timing
; Two entry points are used
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
calc_next_comm_timing: ; Entry point for run phase
; Read commutation time
clr IE_EA
mov TMR2CN0, #00h ; Timer2 disabled
mov Temp1, TMR2L ; Load timer value
mov Temp2, TMR2H
mov Temp3, Timer2_X
jnb TMR2CN0_TF2H, ($+4) ; Check if interrupt is pending
inc Temp3 ; If it is pending, then timer has already wrapped
mov TMR2CN0, #04h ; Timer2 enabled
setb IE_EA
IF MCU_48MHZ == 1
clr C
mov A, Temp3
rrc A
mov Temp3, A
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
ENDIF
; Calculate this commutation time
mov Temp4, Prev_Comm_L
mov Temp5, Prev_Comm_H
mov Prev_Comm_L, Temp1 ; Store timestamp as previous commutation
mov Prev_Comm_H, Temp2
clr C
mov A, Temp1
subb A, Temp4 ; Calculate the new commutation time
mov Temp1, A
mov A, Temp2
subb A, Temp5
jb Flags1.STARTUP_PHASE, calc_next_comm_startup
IF MCU_48MHZ == 1
anl A, #7Fh
ENDIF
mov Temp2, A
jnb Flags1.HIGH_RPM, ($+5) ; Branch if high rpm
ajmp calc_next_comm_timing_fast
ajmp calc_next_comm_normal
calc_next_comm_startup:
mov Temp6, Prev_Comm_X
mov Prev_Comm_X, Temp3 ; Store extended timestamp as previous commutation
mov Temp2, A
mov A, Temp3
subb A, Temp6 ; Calculate the new extended commutation time
IF MCU_48MHZ == 1
anl A, #7Fh
ENDIF
mov Temp3, A
jz ($+6)
mov Temp1, #0FFh
mov Temp2, #0FFh
mov Temp7, Prev_Prev_Comm_L
mov Temp8, Prev_Prev_Comm_H
mov Prev_Prev_Comm_L, Temp4
mov Prev_Prev_Comm_H, Temp5
mov Temp1, Prev_Comm_L ; Reload this commutation time
mov Temp2, Prev_Comm_H
clr C
mov A, Temp1
subb A, Temp7 ; Calculate the new commutation time based upon the two last commutations (to reduce sensitivity to offset)
mov Temp1, A
mov A, Temp2
subb A, Temp8
mov Temp2, A
clr C
mov A, Comm_Period4x_H ; Average with previous and save
rrc A
mov Temp4, A
mov A, Comm_Period4x_L
rrc A
mov Temp3, A
mov A, Temp1
add A, Temp3
mov Comm_Period4x_L, A
mov A, Temp2
addc A, Temp4
mov Comm_Period4x_H, A
jnc ($+8)
mov Comm_Period4x_L, #0FFh
mov Comm_Period4x_H, #0FFh
ajmp calc_new_wait_times_setup
calc_next_comm_normal:
; Calculate new commutation time
mov Temp3, Comm_Period4x_L ; Comm_Period4x(-l-h) holds the time of 4 commutations
mov Temp4, Comm_Period4x_H
mov Temp5, Comm_Period4x_L ; Copy variables
mov Temp6, Comm_Period4x_H
mov Temp7, #4 ; Divide Comm_Period4x 4 times as default
mov Temp8, #2 ; Divide new commutation time 2 times as default
clr C
mov A, Temp4
subb A, #04h
jc calc_next_comm_avg_period_div
dec Temp7 ; Reduce averaging time constant for low speeds
dec Temp8
clr C
mov A, Temp4
subb A, #08h
jc calc_next_comm_avg_period_div
jb Flags1.INITIAL_RUN_PHASE, calc_next_comm_avg_period_div ; Do not average very fast during initial run
dec Temp7 ; Reduce averaging time constant more for even lower speeds
dec Temp8
calc_next_comm_avg_period_div:
clr C
mov A, Temp6
rrc A ; Divide by 2
mov Temp6, A
mov A, Temp5
rrc A
mov Temp5, A
djnz Temp7, calc_next_comm_avg_period_div
clr C
mov A, Temp3
subb A, Temp5 ; Subtract a fraction
mov Temp3, A
mov A, Temp4
subb A, Temp6
mov Temp4, A
mov A, Temp8 ; Divide new time
jz calc_next_comm_new_period_div_done
calc_next_comm_new_period_div:
clr C
mov A, Temp2
rrc A ; Divide by 2
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
djnz Temp8, calc_next_comm_new_period_div
calc_next_comm_new_period_div_done:
mov A, Temp3
add A, Temp1 ; Add the divided new time
mov Temp3, A
mov A, Temp4
addc A, Temp2
mov Temp4, A
mov Comm_Period4x_L, Temp3 ; Store Comm_Period4x_X
mov Comm_Period4x_H, Temp4
jnc calc_new_wait_times_setup; If period larger than 0xffff - go to slow case
mov Temp4, #0FFh
mov Comm_Period4x_L, Temp4 ; Set commutation period registers to very slow timing (0xffff)
mov Comm_Period4x_H, Temp4
calc_new_wait_times_setup:
; Set high rpm bit (if above 156k erpm)
clr C
mov A, Temp4
subb A, #2
jnc ($+4)
setb Flags1.HIGH_RPM ; Set high rpm bit
; Load programmed commutation timing
jnb Flags1.STARTUP_PHASE, calc_new_wait_per_startup_done ; Set dedicated timing during startup
mov Temp8, #3
ajmp calc_new_wait_per_demag_done
calc_new_wait_per_startup_done:
mov Temp1, #Pgm_Comm_Timing ; Load timing setting
mov A, @Temp1
mov Temp8, A ; Store in Temp8
clr C
mov A, Demag_Detected_Metric ; Check demag metric
subb A, #130
jc calc_new_wait_per_demag_done
inc Temp8 ; Increase timing
clr C
mov A, Demag_Detected_Metric
subb A, #160
jc ($+3)
inc Temp8 ; Increase timing again
clr C
mov A, Temp8 ; Limit timing to max
subb A, #6
jc ($+4)
mov Temp8, #5 ; Set timing to max
calc_new_wait_per_demag_done:
; Set timing reduction
mov Temp7, #2
; Load current commutation timing
mov A, Comm_Period4x_H ; Divide 4 times
swap A
anl A, #00Fh
mov Temp2, A
mov A, Comm_Period4x_H
swap A
anl A, #0F0h
mov Temp1, A
mov A, Comm_Period4x_L
swap A
anl A, #00Fh
add A, Temp1
mov Temp1, A
clr C
mov A, Temp1
subb A, Temp7
mov Temp3, A
mov A, Temp2
subb A, #0
mov Temp4, A
jc load_min_time ; Check that result is still positive
clr C
mov A, Temp3
subb A, #1
mov A, Temp4
subb A, #0
jnc calc_new_wait_times_exit ; Check that result is still above minumum
load_min_time:
mov Temp3, #1
clr A
mov Temp4, A
calc_new_wait_times_exit:
ajmp wait_advance_timing
; Fast calculation (Comm_Period4x_H less than 2)
calc_next_comm_timing_fast:
; Calculate new commutation time
mov Temp3, Comm_Period4x_L ; Comm_Period4x(-l-h) holds the time of 4 commutations
mov Temp4, Comm_Period4x_H
mov A, Temp4 ; Divide by 2 4 times
swap A
mov Temp7, A
mov A, Temp3
swap A
anl A, #0Fh
orl A, Temp7
mov Temp5, A
clr C
mov A, Temp3 ; Subtract a fraction
subb A, Temp5
mov Temp3, A
mov A, Temp4
subb A, #0
mov Temp4, A
clr C
mov A, Temp1
rrc A ; Divide by 2 2 times
clr C
rrc A
mov Temp1, A
mov A, Temp3 ; Add the divided new time
add A, Temp1
mov Temp3, A
mov A, Temp4
addc A, #0
mov Temp4, A
mov Comm_Period4x_L, Temp3 ; Store Comm_Period4x_X
mov Comm_Period4x_H, Temp4
clr C
mov A, Temp4 ; If erpm below 156k - go to normal case
subb A, #2
jc ($+4)
clr Flags1.HIGH_RPM ; Clear high rpm bit
; Set timing reduction
mov Temp1, #2
mov A, Temp4 ; Divide by 2 4 times
swap A
mov Temp7, A
mov Temp4, #0
mov A, Temp3
swap A
anl A, #0Fh
orl A, Temp7
mov Temp3, A
clr C
mov A, Temp3
subb A, Temp1
mov Temp3, A
jc load_min_time_fast ; Check that result is still positive
clr C
subb A, #1
jnc calc_new_wait_times_fast_done ; Check that result is still above minumum
load_min_time_fast:
mov Temp3, #1
calc_new_wait_times_fast_done:
mov Temp1, #Pgm_Comm_Timing ; Load timing setting
mov A, @Temp1
mov Temp8, A ; Store in Temp8
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait advance timing routine
;
; No assumptions
; NOTE: Be VERY careful if using temp registers. They are passed over this routine
;
; Waits for the advance timing to elapse and sets up the next zero cross wait
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait_advance_timing:
jnb Flags0.T3_PENDING, ($+5)
ajmp wait_advance_timing
; Setup next wait time
mov TMR3RLL, Wt_ZC_Tout_Start_L
mov TMR3RLH, Wt_ZC_Tout_Start_H
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Calculate new wait times routine
;
; No assumptions
;
; Calculates new wait times
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
calc_new_wait_times:
clr C
clr A
subb A, Temp3 ; Negate
mov Temp1, A
clr A
subb A, Temp4
mov Temp2, A
IF MCU_48MHZ == 1
clr C
mov A, Temp1 ; Multiply by 2
rlc A
mov Temp1, A
mov A, Temp2
rlc A
mov Temp2, A
ENDIF
jnb Flags1.HIGH_RPM, ($+5) ; Branch if high rpm
ajmp calc_new_wait_times_fast
mov A, Temp1 ; Copy values
mov Temp3, A
mov A, Temp2
mov Temp4, A
setb C ; Negative numbers - set carry
mov A, Temp2
rrc A ; Divide by 2
mov Temp6, A
mov A, Temp1
rrc A
mov Temp5, A
mov Wt_Zc_Tout_Start_L, Temp1; Set 15deg time for zero cross scan timeout
mov Wt_Zc_Tout_Start_H, Temp2
clr C
mov A, Temp8 ; (Temp8 has Pgm_Comm_Timing)
subb A, #3 ; Is timing normal?
jz store_times_decrease ; Yes - branch
mov A, Temp8
jb ACC.0, adjust_timing_two_steps ; If an odd number - branch
mov A, Temp1 ; Add 7.5deg and store in Temp1/2
add A, Temp5
mov Temp1, A
mov A, Temp2
addc A, Temp6
mov Temp2, A
mov A, Temp5 ; Store 7.5deg in Temp3/4
mov Temp3, A
mov A, Temp6
mov Temp4, A
jmp store_times_up_or_down
adjust_timing_two_steps:
mov A, Temp1 ; Add 15deg and store in Temp1/2
add A, Temp1
mov Temp1, A
mov A, Temp2
addc A, Temp2
mov Temp2, A
clr C
mov A, Temp1
add A, #1
mov Temp1, A
mov A, Temp2
addc A, #0
mov Temp2, A
mov Temp3, #-1 ; Store minimum time in Temp3/4
mov Temp4, #0FFh
store_times_up_or_down:
clr C
mov A, Temp8
subb A, #3 ; Is timing higher than normal?
jc store_times_decrease ; No - branch
store_times_increase:
mov Wt_Comm_Start_L, Temp3 ; Now commutation time (~60deg) divided by 4 (~15deg nominal)
mov Wt_Comm_Start_H, Temp4
mov Wt_Adv_Start_L, Temp1 ; New commutation advance time (~15deg nominal)
mov Wt_Adv_Start_H, Temp2
mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg)
mov Wt_Zc_Scan_Start_H, Temp6
ajmp wait_before_zc_scan
store_times_decrease:
mov Wt_Comm_Start_L, Temp1 ; Now commutation time (~60deg) divided by 4 (~15deg nominal)
mov Wt_Comm_Start_H, Temp2
mov Wt_Adv_Start_L, Temp3 ; New commutation advance time (~15deg nominal)
mov Wt_Adv_Start_H, Temp4
mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg)
mov Wt_Zc_Scan_Start_H, Temp6
jnb Flags1.STARTUP_PHASE, store_times_exit
mov Wt_Comm_Start_L, #0F0h ; Set very short delays for all but advance time during startup, in order to widen zero cross capture range
mov Wt_Comm_Start_H, #0FFh
mov Wt_Zc_Scan_Start_L, #0F0h
mov Wt_Zc_Scan_Start_H, #0FFh
mov Wt_Zc_Tout_Start_L, #0F0h
mov Wt_Zc_Tout_Start_H, #0FFh
store_times_exit:
ajmp wait_before_zc_scan
calc_new_wait_times_fast:
mov A, Temp1 ; Copy values
mov Temp3, A
setb C ; Negative numbers - set carry
mov A, Temp1 ; Divide by 2
rrc A
mov Temp5, A
mov Wt_Zc_Tout_Start_L, Temp1; Set 15deg time for zero cross scan timeout
clr C
mov A, Temp8 ; (Temp8 has Pgm_Comm_Timing)
subb A, #3 ; Is timing normal?
jz store_times_decrease_fast; Yes - branch
mov A, Temp8
jb ACC.0, adjust_timing_two_steps_fast ; If an odd number - branch
mov A, Temp1 ; Add 7.5deg and store in Temp1
add A, Temp5
mov Temp1, A
mov A, Temp5 ; Store 7.5deg in Temp3
mov Temp3, A
ajmp store_times_up_or_down_fast
adjust_timing_two_steps_fast:
mov A, Temp1 ; Add 15deg and store in Temp1
add A, Temp1
add A, #1
mov Temp1, A
mov Temp3, #-1 ; Store minimum time in Temp3
store_times_up_or_down_fast:
clr C
mov A, Temp8
subb A, #3 ; Is timing higher than normal?
jc store_times_decrease_fast; No - branch
store_times_increase_fast:
mov Wt_Comm_Start_L, Temp3 ; Now commutation time (~60deg) divided by 4 (~15deg nominal)
mov Wt_Adv_Start_L, Temp1 ; New commutation advance time (~15deg nominal)
mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg)
ajmp wait_before_zc_scan
store_times_decrease_fast:
mov Wt_Comm_Start_L, Temp1 ; Now commutation time (~60deg) divided by 4 (~15deg nominal)
mov Wt_Adv_Start_L, Temp3 ; New commutation advance time (~15deg nominal)
mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg)
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait before zero cross scan routine
;
; No assumptions
;
; Waits for the zero cross scan wait time to elapse
; Also sets up timer 3 for the zero cross scan timeout time
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait_before_zc_scan:
jnb Flags0.T3_PENDING, ($+5)
ajmp wait_before_zc_scan
mov Startup_Zc_Timeout_Cntd, #2
setup_zc_scan_timeout:
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
mov A, Flags1
anl A, #((1 SHL STARTUP_PHASE)+(1 SHL INITIAL_RUN_PHASE))
jz wait_before_zc_scan_exit
mov Temp1, Comm_Period4x_L ; Set long timeout when starting
mov Temp2, Comm_Period4x_H
clr C
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
IF MCU_48MHZ == 0
clr C
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
ENDIF
jnb Flags1.STARTUP_PHASE, setup_zc_scan_timeout_startup_done
mov A, Temp2
add A, #40h ; Increase timeout somewhat to avoid false wind up
mov Temp2, A
setup_zc_scan_timeout_startup_done:
clr IE_EA
anl EIE1, #7Fh ; Disable timer3 interrupts
mov TMR3CN0, #00h ; Timer3 disabled and interrupt flag cleared
clr C
clr A
subb A, Temp1 ; Set timeout
mov TMR3L, A
clr A
subb A, Temp2
mov TMR3H, A
mov TMR3CN0, #04h ; Timer3 enabled and interrupt flag cleared
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
setb IE_EA
wait_before_zc_scan_exit:
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait for comparator to go low/high routines
;
; No assumptions
;
; Waits for the zero cross scan wait time to elapse
; Then scans for comparator going low/high
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait_for_comp_out_low:
setb Flags0.DEMAG_DETECTED ; Set demag detected flag as default
mov Comparator_Read_Cnt, #0 ; Reset number of comparator reads
mov Bit_Access, #00h ; Desired comparator output
jnb Flags1.DIR_CHANGE_BRAKE, ($+6)
mov Bit_Access, #40h
jmp wait_for_comp_out_start
wait_for_comp_out_high:
setb Flags0.DEMAG_DETECTED ; Set demag detected flag as default
mov Comparator_Read_Cnt, #0 ; Reset number of comparator reads
mov Bit_Access, #40h ; Desired comparator output
jnb Flags1.DIR_CHANGE_BRAKE, ($+6)
mov Bit_Access, #00h
wait_for_comp_out_start:
; Set number of comparator readings
mov Temp1, #1 ; Number of OK readings required
mov Temp2, #1 ; Max number of readings required
jb Flags1.HIGH_RPM, comp_scale_samples ; Branch if high rpm
mov A, Flags1 ; Clear demag detected flag if start phases
anl A, #((1 SHL STARTUP_PHASE)+(1 SHL INITIAL_RUN_PHASE))
jz ($+4)
clr Flags0.DEMAG_DETECTED
mov Temp2, #20 ; Too low value (~<15) causes rough running at pwm harmonics. Too high a value (~>35) causes the RCT4215 630 to run rough on full throttle
mov A, Comm_Period4x_H ; Set number of readings higher for lower speeds
clr C
rrc A
jnz ($+3)
inc A
mov Temp1, A
clr C
subb A, #20
jc ($+4)
mov Temp1, #20
jnb Flags1.STARTUP_PHASE, comp_scale_samples
mov Temp1, #27 ; Set many samples during startup, approximately one pwm period
mov Temp2, #27
comp_scale_samples:
IF MCU_48MHZ == 1
clr C
mov A, Temp1
rlc A
mov Temp1, A
clr C
mov A, Temp2
rlc A
mov Temp2, A
ENDIF
comp_check_timeout:
jb Flags0.T3_PENDING, comp_check_timeout_not_timed_out ; Has zero cross scan timeout elapsed?
mov A, Comparator_Read_Cnt ; Check that comparator has been read
jz comp_check_timeout_not_timed_out ; If not read - branch
jnb Flags1.STARTUP_PHASE, comp_check_timeout_timeout_extended ; Extend timeout during startup
djnz Startup_Zc_Timeout_Cntd, comp_check_timeout_extend_timeout
comp_check_timeout_timeout_extended:
setb Flags0.COMP_TIMED_OUT
ajmp setup_comm_wait
comp_check_timeout_extend_timeout:
call setup_zc_scan_timeout
comp_check_timeout_not_timed_out:
inc Comparator_Read_Cnt ; Increment comparator read count
Read_Comp_Out ; Read comparator output
anl A, #40h
cjne A, Bit_Access, comp_read_wrong
ajmp comp_read_ok
comp_read_wrong:
jnb Flags1.STARTUP_PHASE, comp_read_wrong_not_startup
inc Temp1 ; Increment number of OK readings required
clr C
mov A, Temp1
subb A, Temp2 ; If above initial requirement - go back and restart
jc ($+3)
dec Temp1
ajmp comp_check_timeout ; Continue to look for good ones
comp_read_wrong_not_startup:
jb Flags0.DEMAG_DETECTED, comp_read_wrong_extend_timeout
inc Temp1 ; Increment number of OK readings required
clr C
mov A, Temp1
subb A, Temp2
jc ($+4)
ajmp wait_for_comp_out_start ; If above initial requirement - go back and restart
ajmp comp_check_timeout ; Otherwise - take another reading
comp_read_wrong_extend_timeout:
clr Flags0.DEMAG_DETECTED ; Clear demag detected flag
clr IE_EA
anl EIE1, #7Fh ; Disable timer3 interrupts
mov TMR3CN0, #00h ; Timer3 disabled and interrupt flag cleared
jnb Flags1.HIGH_RPM, comp_read_wrong_low_rpm ; Branch if not high rpm
mov TMR3L, #00h ; Set timeout to ~1ms
IF MCU_48MHZ == 1
mov TMR3H, #0F0h
ELSE
mov TMR3H, #0F8h
ENDIF
comp_read_wrong_timeout_set:
mov TMR3CN0, #04h ; Timer3 enabled and interrupt flag cleared
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
setb IE_EA
ajmp wait_for_comp_out_start ; If comparator output is not correct - go back and restart
comp_read_wrong_low_rpm:
mov A, Comm_Period4x_H ; Set timeout to ~4x comm period 4x value
mov Temp7, #0FFh ; Default to long
IF MCU_48MHZ == 1
clr C
rlc A
jc comp_read_wrong_load_timeout
ENDIF
clr C
rlc A
jc comp_read_wrong_load_timeout
clr C
rlc A
jc comp_read_wrong_load_timeout
mov Temp7, A
comp_read_wrong_load_timeout:
clr C
clr A
subb A, Temp7
mov TMR3L, #0
mov TMR3H, A
ajmp comp_read_wrong_timeout_set
comp_read_ok:
clr C
mov A, Startup_Cnt ; Force a timeout for the first commutation
subb A, #1
jnc ($+4)
ajmp wait_for_comp_out_start
jnb Flags0.DEMAG_DETECTED, ($+5) ; Do not accept correct comparator output if it is demag
ajmp wait_for_comp_out_start
djnz Temp1, comp_read_ok_jmp ; Decrement readings counter - repeat comparator reading if not zero
ajmp ($+4)
comp_read_ok_jmp:
ajmp comp_check_timeout
clr Flags0.COMP_TIMED_OUT
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Setup commutation timing routine
;
; No assumptions
;
; Sets up and starts wait from commutation to zero cross
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
setup_comm_wait:
clr IE_EA
anl EIE1, #7Fh ; Disable timer3 interrupts
mov TMR3CN0, #00h ; Timer3 disabled and interrupt flag cleared
mov TMR3L, Wt_Comm_Start_L
mov TMR3H, Wt_Comm_Start_H
mov TMR3CN0, #04h ; Timer3 enabled and interrupt flag cleared
; Setup next wait time
mov TMR3RLL, Wt_Adv_Start_L
mov TMR3RLH, Wt_Adv_Start_H
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
setb IE_EA ; Enable interrupts again
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Evaluate comparator integrity
;
; No assumptions
;
; Checks comparator signal behaviour versus expected behaviour
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
evaluate_comparator_integrity:
mov A, Flags1
anl A, #((1 SHL STARTUP_PHASE)+(1 SHL INITIAL_RUN_PHASE))
jz eval_comp_check_timeout
jb Flags1.INITIAL_RUN_PHASE, ($+5) ; Do not increment beyond startup phase
inc Startup_Cnt ; Increment counter
jmp eval_comp_exit
eval_comp_check_timeout:
jnb Flags0.COMP_TIMED_OUT, eval_comp_exit ; Has timeout elapsed?
jb Flags1.DIR_CHANGE_BRAKE, eval_comp_exit ; Do not exit run mode if it is braking
jb Flags0.DEMAG_DETECTED, eval_comp_exit ; Do not exit run mode if it is a demag situation
dec SP ; Routine exit without "ret" command
dec SP
ljmp run_to_wait_for_power_on_fail ; Yes - exit run mode
eval_comp_exit:
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait for commutation routine
;
; No assumptions
;
; Waits from zero cross to commutation
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait_for_comm:
; Update demag metric
mov Temp1, #0
jnb Flags0.DEMAG_DETECTED, ($+5)
mov Temp1, #1
mov A, Demag_Detected_Metric ; Sliding average of 8, 256 when demag and 0 when not. Limited to minimum 120
mov B, #7
mul AB ; Multiply by 7
mov Temp2, A
mov A, B ; Add new value for current demag status
add A, Temp1
mov B, A
mov A, Temp2
mov C, B.0 ; Divide by 8
rrc A
mov C, B.1
rrc A
mov C, B.2
rrc A
mov Demag_Detected_Metric, A
clr C
subb A, #120 ; Limit to minimum 120
jnc ($+5)
mov Demag_Detected_Metric, #120
clr C
mov A, Demag_Detected_Metric ; Check demag metric
subb A, Demag_Pwr_Off_Thresh
jc wait_for_comm_wait ; Cut power if many consecutive demags. This will help retain sync during hard accelerations
setb Flags0.DEMAG_CUT_POWER ; Set demag power cut flag
All_pwmFETs_off
Set_Pwms_Off
wait_for_comm_wait:
jnb Flags0.T3_PENDING, ($+5)
ajmp wait_for_comm_wait
; Setup next wait time
mov TMR3RLL, Wt_Zc_Scan_Start_L
mov TMR3RLH, Wt_Zc_Scan_Start_H
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Commutation routines
;
; No assumptions
;
; Performs commutation switching
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
; Comm phase 1 to comm phase 2
comm1comm2:
Set_RPM_Out
jb Flags3.PGM_DIR_REV, comm12_rev
clr IE_EA ; Disable all interrupts
BcomFET_off ; Turn off comfet
AcomFET_on ; Turn on comfet
Set_Pwm_C ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_B ; Set comparator phase
jmp comm_exit
comm12_rev:
clr IE_EA ; Disable all interrupts
BcomFET_off ; Turn off comfet
CcomFET_on ; Turn on comfet (reverse)
Set_Pwm_A ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_B ; Set comparator phase
jmp comm_exit
; Comm phase 2 to comm phase 3
comm2comm3:
Clear_RPM_Out
jb Flags3.PGM_DIR_REV, comm23_rev
clr IE_EA ; Disable all interrupts
CpwmFET_off ; Turn off pwmfet
Set_Pwm_B
AcomFET_on ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_C ; Set comparator phase
ljmp comm_exit
comm23_rev:
clr IE_EA ; Disable all interrupts
ApwmFET_off ; Turn off pwmfet (reverse)
Set_Pwm_B
CcomFET_on ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_A ; Set comparator phase (reverse)
ljmp comm_exit
; Comm phase 3 to comm phase 4
comm3comm4:
Set_RPM_Out
jb Flags3.PGM_DIR_REV, comm34_rev
clr IE_EA ; Disable all interrupts
AcomFET_off ; Turn off comfet
CcomFET_on ; Turn on comfet
Set_Pwm_B ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_A ; Set comparator phase
jmp comm_exit
comm34_rev:
clr IE_EA ; Disable all interrupts
CcomFET_off ; Turn off comfet (reverse)
AcomFET_on ; Turn on comfet (reverse)
Set_Pwm_B ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_C ; Set comparator phase (reverse)
jmp comm_exit
; Comm phase 4 to comm phase 5
comm4comm5:
Clear_RPM_Out
jb Flags3.PGM_DIR_REV, comm45_rev
clr IE_EA ; Disable all interrupts
BpwmFET_off ; Turn off pwmfet
Set_Pwm_A
CcomFET_on ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_B ; Set comparator phase
ljmp comm_exit
comm45_rev:
clr IE_EA ; Disable all interrupts
BpwmFET_off ; Turn off pwmfet
Set_Pwm_C
AcomFET_on ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_B ; Set comparator phase
ljmp comm_exit
; Comm phase 5 to comm phase 6
comm5comm6:
Set_RPM_Out
jb Flags3.PGM_DIR_REV, comm56_rev
clr IE_EA ; Disable all interrupts
CcomFET_off ; Turn off comfet
BcomFET_on ; Turn on comfet
Set_Pwm_A ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_C ; Set comparator phase
jmp comm_exit
comm56_rev:
clr IE_EA ; Disable all interrupts
AcomFET_off ; Turn off comfet (reverse)
BcomFET_on ; Turn on comfet
Set_Pwm_C ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_A ; Set comparator phase (reverse)
jmp comm_exit
; Comm phase 6 to comm phase 1
comm6comm1:
Clear_RPM_Out
jb Flags3.PGM_DIR_REV, comm61_rev
clr IE_EA ; Disable all interrupts
ApwmFET_off ; Turn off pwmfet
Set_Pwm_C
BcomFET_on ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_A ; Set comparator phase
jmp comm_exit
comm61_rev:
clr IE_EA ; Disable all interrupts
CpwmFET_off ; Turn off pwmfet (reverse)
Set_Pwm_A
BcomFET_on ; To reapply power after a demag cut
setb IE_EA
Set_Comp_Phase_C ; Set comparator phase (reverse)
comm_exit:
clr Flags0.DEMAG_CUT_POWER ; Clear demag power cut flag
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Switch power off routine
;
; No assumptions
;
; Switches all fets off
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
switch_power_off:
All_pwmFETs_Off ; Turn off all pwm fets
All_comFETs_Off ; Turn off all commutation fets
Set_Pwms_Off
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Set default parameters
;
; No assumptions
;
; Sets default programming parameters
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
set_default_parameters:
mov Temp1, #_Pgm_Gov_P_Gain
mov @Temp1, #0FFh ; Governor P gain
inc Temp1
mov @Temp1, #0FFh ; Governor I gain
inc Temp1
mov @Temp1, #0FFh ; Governor mode
inc Temp1
mov @Temp1, #0FFh ; Low voltage limit
inc Temp1
mov @Temp1, #0FFh ; Multi gain
inc Temp1
mov @Temp1, #0FFh
inc Temp1
mov @Temp1, #DEFAULT_PGM_STARTUP_PWR
inc Temp1
mov @Temp1, #0FFh ; Pwm freq
inc Temp1
mov @Temp1, #DEFAULT_PGM_DIRECTION
mov Temp1, #Pgm_Enable_TX_Program
mov @Temp1, #DEFAULT_PGM_ENABLE_TX_PROGRAM
inc Temp1
mov @Temp1, #0FFh ; Main rearm start
inc Temp1
mov @Temp1, #0FFh ; Governor setup target
inc Temp1
mov @Temp1, #0FFh ; Startup rpm
inc Temp1
mov @Temp1, #0FFh ; Startup accel
inc Temp1
mov @Temp1, #0FFh ; Voltage comp
inc Temp1
mov @Temp1, #DEFAULT_PGM_COMM_TIMING
inc Temp1
mov @Temp1, #0FFh ; Damping force
inc Temp1
mov @Temp1, #0FFh ; Governor range
inc Temp1
mov @Temp1, #0FFh ; Startup method
inc Temp1
mov @Temp1, #DEFAULT_PGM_MIN_THROTTLE
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAX_THROTTLE
inc Temp1
mov @Temp1, #DEFAULT_PGM_BEEP_STRENGTH
inc Temp1
mov @Temp1, #DEFAULT_PGM_BEACON_STRENGTH
inc Temp1
mov @Temp1, #DEFAULT_PGM_BEACON_DELAY
inc Temp1
mov @Temp1, #0FFh ; Throttle rate
inc Temp1
mov @Temp1, #DEFAULT_PGM_DEMAG_COMP
inc Temp1
mov @Temp1, #0FFh ; Bec voltage high
inc Temp1
mov @Temp1, #DEFAULT_PGM_CENTER_THROTTLE
inc Temp1
mov @Temp1, #0FFh
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_TEMP_PROT
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_POWER_PROT
inc Temp1
mov @Temp1, #0FFh ; Enable pwm input
inc Temp1
mov @Temp1, #0FFh ; Pwm dither
inc Temp1
mov @Temp1, #DEFAULT_PGM_BRAKE_ON_STOP
inc Temp1
mov @Temp1, #DEFAULT_PGM_LED_CONTROL
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Scale throttle cal
;
; No assumptions
;
; Scales a throttle cal value
; Input is ACC, output is Temp2/Temp1
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
scale_throttle_cal:
mov Temp3, A
mov B, #0Ch ; Calculate "3%" (for going from 1000us to numerical 1024)
mul AB
mov Temp4, B
mov A, Temp3
clr C ; Shift to 9 bits
rlc A
mov Temp1, A
mov A, #1
rlc A
mov Temp2, A
mov A, Temp1 ; Shift to 10 bits
clr C
rlc A
mov Temp1, A
mov A, Temp2
rlc A
mov Temp2, A
mov A, Temp1 ; Add "3%"
clr C
add A, Temp4
mov Temp1, A
mov A, Temp2
addc A, #0
mov Temp2, A
IF MCU_48MHZ == 1
mov A, Temp1 ; Shift to 11 bits
clr C
rlc A
mov Temp1, A
mov A, Temp2
rlc A
mov Temp2, A
ENDIF
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Decode settings
;
; No assumptions
;
; Decodes various settings
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
decode_settings:
; Load programmed direction
mov Temp1, #Pgm_Direction
mov A, @Temp1
clr C
subb A, #3
setb Flags3.PGM_BIDIR
jnc ($+4)
clr Flags3.PGM_BIDIR
clr Flags3.PGM_DIR_REV
mov A, @Temp1
jnb ACC.1, ($+5)
setb Flags3.PGM_DIR_REV
mov C, Flags3.PGM_DIR_REV
mov Flags3.PGM_BIDIR_REV, C
; Decode startup power
mov Temp1, #Pgm_Startup_Pwr
mov A, @Temp1
dec A
mov DPTR, #STARTUP_POWER_TABLE
movc A, @A+DPTR
mov Temp1, #Pgm_Startup_Pwr_Decoded
mov @Temp1, A
; Decode low rpm power slope
mov Temp1, #Pgm_Startup_Pwr
mov A, @Temp1
mov Low_Rpm_Pwr_Slope, A
clr C
subb A, #2
jnc ($+5)
mov Low_Rpm_Pwr_Slope, #2
; Decode demag compensation
mov Temp1, #Pgm_Demag_Comp
mov A, @Temp1
mov Demag_Pwr_Off_Thresh, #255 ; Set default
cjne A, #2, decode_demag_high
mov Demag_Pwr_Off_Thresh, #160 ; Settings for demag comp low
decode_demag_high:
cjne A, #3, decode_demag_done
mov Demag_Pwr_Off_Thresh, #130 ; Settings for demag comp high
decode_demag_done:
; Decode temperature protection limit
mov Temp1, #Pgm_Enable_Temp_Prot
mov A, @Temp1
mov Temp1, A
jz decode_temp_done
mov A, #(TEMP_LIMIT-TEMP_LIMIT_STEP)
decode_temp_step:
add A, #TEMP_LIMIT_STEP
djnz Temp1, decode_temp_step
decode_temp_done:
mov Temp_Prot_Limit, A
; Decode throttle cal
mov Temp1, #Pgm_Min_Throttle ; Throttle cal is in 4us units
mov A, @Temp1
call scale_throttle_cal
mov Min_Throttle_L, Temp1
mov Min_Throttle_H, Temp2
mov Temp1, #Pgm_Center_Throttle ; Throttle cal is in 4us units
mov A, @Temp1
call scale_throttle_cal
mov Center_Throttle_L, Temp1
mov Center_Throttle_H, Temp2
mov Temp1, #Pgm_Max_Throttle ; Throttle cal is in 4us units
mov A, @Temp1
call scale_throttle_cal
mov Max_Throttle_L, Temp1
mov Max_Throttle_H, Temp2
call switch_power_off ; Reset DPTR
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Find throttle gains
;
; No assumptions
;
; Finds throttle gains for both directions in bidirectional mode
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
find_throttle_gains:
; Check if full range is chosen
jnb Flags2.RCP_FULL_RANGE, find_throttle_gains_normal
mov Temp3, #0 ; Min throttle
mov Temp4, #0
mov Temp5, #255 ; Max throttle
mov Temp6, #0
mov Temp7, #0 ; Deadband
call find_throttle_gain
mov Throttle_Gain_M, Temp4
mov Throttle_Gain, Temp3
ret
find_throttle_gains_normal:
; Check if bidirectional operation
jnb Flags3.PGM_BIDIR, find_throttle_gains_bidir_done
mov Temp1, #Pgm_Min_Throttle
mov A, @Temp1
mov Temp3, A
mov Temp4, #0
mov Temp1, #Pgm_Center_Throttle
mov A, @Temp1
mov Temp5, A
mov Temp6, #0
clr C
mov A, Temp3 ; Scale gains in bidirectional
rlc A
mov Temp3, A
mov A, Temp4
rlc A
mov Temp4, A
clr C
mov A, Temp5
rlc A
mov Temp5, A
mov A, Temp6
rlc A
mov Temp6, A
mov Temp7, #10 ; Compensate for deadband in bidirectional
call find_throttle_gain
mov Throttle_Gain_BD_Rev_M, Temp4
mov Throttle_Gain_BD_Rev, Temp3
find_throttle_gains_bidir_done:
mov Temp1, #Pgm_Min_Throttle
jnb Flags3.PGM_BIDIR, ($+5)
mov Temp1, #Pgm_Center_Throttle
mov A, @Temp1
mov Temp3, A
mov Temp4, #0
mov Temp1, #Pgm_Max_Throttle
mov A, @Temp1
mov Temp5, A
mov Temp6, #0
mov Temp7, #0 ; No deadband
jnb Flags3.PGM_BIDIR, find_throttle_gain_fwd
clr C
mov A, Temp3 ; Scale gains in bidirectional
rlc A
mov Temp3, A
mov A, Temp4
rlc A
mov Temp4, A
clr C
mov A, Temp5
rlc A
mov Temp5, A
mov A, Temp6
rlc A
mov Temp6, A
mov Temp7, #10 ; Compensate for deadband in bidirectional
find_throttle_gain_fwd:
call find_throttle_gain
mov Throttle_Gain_M, Temp4
mov Throttle_Gain, Temp3
ret
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Find throttle gain
;
; The difference between max and min throttle must be more than 140us (a Pgm_xxx_Throttle difference of 35)
; Temp4/3 holds min throttle, Temp6/5 holds max throttle, Temp7 holds deadband, Temp4/Temp3 gives resulting gain
;
; Finds throttle gain from throttle calibration values
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
find_throttle_gain:
; Subtract deadband from max
clr C
mov A, Temp5
subb A, Temp7
mov Temp5, A
mov A, Temp6
subb A, #0
mov Temp6, A
; Calculate difference
clr C
mov A, Temp5
subb A, Temp3
mov Temp5, A
mov A, Temp6
subb A, Temp4
mov Temp6, A
; Check that difference is minimum 35
clr C
mov A, Temp5
subb A, #35
mov A, Temp6
subb A, #0
jnc ($+6)
mov Temp5, #35
mov Temp6, #0
; Check that difference is maximum 511
clr C
mov A, Temp5
subb A, #255
mov A, Temp6
subb A, #1
jc ($+6)
mov Temp5, #255
mov Temp6, #1
; Find gain
mov Temp4, #0FFh
find_throttle_gain_loop:
inc Temp4
mov Temp3, #0
test_throttle_gain:
inc Temp3
mov A, Temp3
jnz test_throttle_gain_mult
clr C
mov A, Temp5 ; Set multiplier x2 and range /2
rlc A
mov Temp5, A
mov A, Temp6
rlc A
mov Temp6, A
ajmp find_throttle_gain_loop
test_throttle_gain_mult:
mov A, Temp5 ; A has difference, B has gain
mov B, Temp3
mul AB
mov Temp7, B
mov A, Temp6
mov B, Temp3
mul AB
add A, Temp7
subb A, #124
jc test_throttle_gain
mov A, Temp3
cpl A
jz find_throttle_gain_loop
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Average throttle
;
; Outputs result in Temp8
;
; Averages throttle calibration readings
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
average_throttle:
setb Flags2.RCP_FULL_RANGE ; Set range to 1000-2020us
call find_throttle_gains ; Set throttle gains
call wait30ms
call wait30ms
mov Temp3, #0
mov Temp4, #0
mov Temp5, #16 ; Average 16 measurments
average_throttle_meas:
call wait3ms ; Wait for new RC pulse value
mov A, New_Rcp ; Get new RC pulse value
add A, Temp3
mov Temp3, A
mov A, #0
addc A, Temp4
mov Temp4, A
djnz Temp5, average_throttle_meas
mov Temp5, #4 ; Shift 4 times
average_throttle_div:
clr C
mov A, Temp4 ; Shift right
rrc A
mov Temp4, A
mov A, Temp3
rrc A
mov Temp3, A
djnz Temp5, average_throttle_div
mov Temp8, A ; Copy to Temp8
mov A, Temp4
jz ($+4)
mov Temp8, #0FFh
clr Flags2.RCP_FULL_RANGE
call find_throttle_gains ; Set throttle gains
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; LED control
;
; No assumptions
;
; Controls LEDs
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
led_control:
mov Temp1, #Pgm_LED_Control
mov A, @Temp1
mov Temp2, A
anl A, #03h
Set_LED_0
jnz led_0_done
Clear_LED_0
led_0_done:
mov A, Temp2
anl A, #0Ch
Set_LED_1
jnz led_1_done
Clear_LED_1
led_1_done:
mov A, Temp2
anl A, #030h
Set_LED_2
jnz led_2_done
Clear_LED_2
led_2_done:
mov A, Temp2
anl A, #0C0h
Set_LED_3
jnz led_3_done
Clear_LED_3
led_3_done:
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Main program start
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;**** **** **** **** **** **** **** **** **** **** **** **** ****
pgm_start:
; Initialize flash keys to invalid values
mov Flash_Key_1, #0
mov Flash_Key_2, #0
; Disable the WDT.
mov WDTCN, #0DEh ; Disable watchdog
mov WDTCN, #0ADh
; Initialize stack
mov SP, #0c0h ; Stack = 64 upper bytes of RAM
; Initialize VDD monitor
orl VDM0CN, #080h ; Enable the VDD monitor
IF ONE_S_CAPABLE == 0
mov RSTSRC, #06h ; Set missing clock and VDD monitor as a reset source if not 1S capable
ELSE
mov RSTSRC, #04h ; Do not set VDD monitor as a reset source for 1S ESCSs, in order to avoid resets due to it
ENDIF
; Set clock frequency
mov CLKSEL, #00h ; Set clock divider to 1
; Switch power off
call switch_power_off
; Ports initialization
mov P0, #P0_INIT
mov P0MDIN, #P0_DIGITAL
mov P0MDOUT, #P0_PUSHPULL
mov P0, #P0_INIT
mov P0SKIP, #P0_SKIP
mov P1, #P1_INIT
mov P1MDIN, #P1_DIGITAL
mov P1MDOUT, #P1_PUSHPULL
mov P1, #P1_INIT
mov P1SKIP, #P1_SKIP
mov P2MDOUT, #P2_PUSHPULL
; Initialize the XBAR and related functionality
Initialize_Xbar
; Switch power off again, after initializing ports
call switch_power_off
; Clear RAM
clr A ; Clear accumulator
mov Temp1, A ; Clear Temp1
clear_ram:
mov @Temp1, A ; Clear RAM
djnz Temp1, clear_ram ; Is A not zero? - jump
; Set default programmed parameters
call set_default_parameters
; Read all programmed parameters
call read_all_eeprom_parameters
; Set beep strength
mov Temp1, #Pgm_Beep_Strength
mov Beep_Strength, @Temp1
; Set initial arm variable
mov Initial_Arm, #1
; Initializing beep
clr IE_EA ; Disable interrupts explicitly
call wait200ms
call beep_f1
call wait30ms
call beep_f2
call wait30ms
call beep_f3
call wait30ms
call led_control
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; No signal entry point
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
init_no_signal:
; Disable interrupts explicitly
clr IE_EA
; Initialize flash keys to invalid values
mov Flash_Key_1, #0
mov Flash_Key_2, #0
; Check if input signal is high for more than 15ms
mov Temp1, #250
input_high_check_1:
mov Temp2, #250
input_high_check_2:
jnb RTX_PORT.RTX_PIN, bootloader_done ; Look for low
djnz Temp2, input_high_check_2
djnz Temp1, input_high_check_1
ljmp 1C00h ; Jump to bootloader
bootloader_done:
; Decode settings
call decode_settings
; Find throttle gain from stored min and max settings
call find_throttle_gains
; Set beep strength
mov Temp1, #Pgm_Beep_Strength
mov Beep_Strength, @Temp1
; Switch power off
call switch_power_off
; Set clock frequency
IF MCU_48MHZ == 1
Set_MCU_Clk_24MHz
ENDIF
mov IT01CF, #RTX_PIN ; Route RCP input to INT0
mov TCON, #11h ; Timer0 run and INT0 edge triggered
mov CKCON0, #04h ; Timer0 clock is system clock
mov TMOD, #09h ; Timer0 set to 16bits and gated by INT0
mov TMR2CN0, #04h ; Timer2 enabled
mov TMR3CN0, #04h ; Timer3 enabled
Initialize_PCA ; Initialize PCA
Set_Pwm_Polarity ; Set pwm polarity
Enable_Power_Pwm_Module ; Enable power pwm module
Enable_Damp_Pwm_Module ; Enable damping pwm module
; Enable interrupts
IF MCU_48MHZ == 0
mov IE, #21h ; Enable timer2 interrupts and INT0 interrupts
ELSE
mov IE, #23h ; Enable timer0, timer2 interrupts and INT0 interrupts
ENDIF
mov EIE1, #90h ; Enable timer3 and PCA0 interrupts
mov EIP1, #10h ; High priority to PCA0 interrupts
; Initialize comparator
mov CMP0CN0, #80h ; Comparator enabled, no hysteresis
mov CMP0MD, #00h ; Comparator response time 100ns
; Initialize ADC
Initialize_Adc ; Initialize ADC operation
call wait1ms
setb IE_EA ; Enable all interrupts
; Reset stall count
mov Stall_Cnt, #0
; Initialize RC pulse
clr Flags2.RCP_UPDATED ; Clear updated flag
call wait200ms
; Test whether signal is OneShot125
clr Flags2.RCP_ONESHOT125 ; Clear OneShot125 flag
mov Rcp_Outside_Range_Cnt, #0 ; Reset out of range counter
call wait100ms ; Wait for new RC pulse
clr C
mov A, Rcp_Outside_Range_Cnt ; Check how many pulses were outside normal range ("745-2235us")
subb A, #10
jc validate_rcp_start
setb Flags2.RCP_ONESHOT125 ; Set OneShot125 flag
; Test whether signal is OneShot42
clr Flags2.RCP_ONESHOT42 ; Clear OneShot42 flag
mov Rcp_Outside_Range_Cnt, #0 ; Reset out of range counter
call wait100ms ; Wait for new RC pulse
clr C
mov A, Rcp_Outside_Range_Cnt ; Check how many pulses were outside normal range ("745-2235us")
subb A, #10
jc validate_rcp_start
setb Flags2.RCP_ONESHOT42 ; Set OneShot42 flag
; Test whether signal is Multishot
clr Flags2.RCP_MULTISHOT ; Clear Multishot flag
mov Rcp_Outside_Range_Cnt, #0 ; Reset out of range counter
call wait100ms ; Wait for new RC pulse
clr C
mov A, Rcp_Outside_Range_Cnt ; Check how many pulses were outside normal range ("745-2235us")
subb A, #10
jc validate_rcp_start
setb Flags2.RCP_MULTISHOT ; Set OneShot42 flag
; Validate RC pulse
validate_rcp_start:
call wait3ms ; Wait for new RC pulse
jb Flags2.RCP_UPDATED, ($+6) ; Is there an updated RC pulse available - proceed
ljmp init_no_signal ; Go back to detect input signal
; Beep arm sequence start signal
clr IE_EA ; Disable all interrupts
call beep_f1 ; Signal that RC pulse is ready
call beep_f1
call beep_f1
setb IE_EA ; Enable all interrupts
call wait200ms
; Arming sequence start
arming_start:
jnb Flags3.PGM_BIDIR, ($+5)
ajmp program_by_tx_checked ; Disable tx programming if bidirectional operation
call wait3ms
mov Temp1, #Pgm_Enable_TX_Program; Start programming mode entry if enabled
mov A, @Temp1
clr C
subb A, #1 ; Is TX programming enabled?
jnc arming_initial_arm_check ; Yes - proceed
jmp program_by_tx_checked ; No - branch
arming_initial_arm_check:
mov A, Initial_Arm ; Yes - check if it is initial arm sequence
clr C
subb A, #1 ; Is it the initial arm sequence?
jnc arming_check ; Yes - proceed
jmp program_by_tx_checked ; No - branch
arming_check:
; Initialize flash keys to valid values
mov Flash_Key_1, #0A5h
mov Flash_Key_2, #0F1h
; Throttle calibration and tx program entry
mov Temp8, #2 ; Set 1 seconds wait time
throttle_high_cal:
setb Flags2.RCP_FULL_RANGE ; Set range to 1000-2020us
call find_throttle_gains ; Set throttle gains
call wait100ms ; Wait for new throttle value
clr IE_EA ; Disable interrupts (freeze New_Rcp value)
clr Flags2.RCP_FULL_RANGE ; Set programmed range
call find_throttle_gains ; Set throttle gains
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, #(255/2) ; Is RC pulse above midstick?
setb IE_EA ; Enable interrupts
jc program_by_tx_checked ; No - branch
call wait1ms
clr IE_EA ; Disable all interrupts
call beep_f4
setb IE_EA ; Enable all interrupts
djnz Temp8, throttle_high_cal ; Continue to wait
call average_throttle
clr C
mov A, Temp8
mov Temp1, #Pgm_Max_Throttle ; Store
mov @Temp1, A
call wait200ms
call success_beep
throttle_low_cal_start:
mov Temp8, #10 ; Set 3 seconds wait time
throttle_low_cal:
setb Flags2.RCP_FULL_RANGE ; Set range to 1000-2020us
call find_throttle_gains ; Set throttle gains
call wait100ms
clr IE_EA ; Disable interrupts (freeze New_Rcp value)
clr Flags2.RCP_FULL_RANGE ; Set programmed range
call find_throttle_gains ; Set throttle gains
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, #(255/2) ; Below midstick?
setb IE_EA ; Enable interrupts
jnc throttle_low_cal_start ; No - start over
call wait1ms
clr IE_EA ; Disable all interrupts
call beep_f1
call wait10ms
call beep_f1
setb IE_EA ; Enable all interrupts
djnz Temp8, throttle_low_cal ; Continue to wait
call average_throttle
mov A, Temp8
add A, #3 ; Add about 1%
mov Temp1, #Pgm_Min_Throttle ; Store
mov @Temp1, A
mov Temp1, A ; Min throttle in Temp1
mov Temp2, #Pgm_Max_Throttle
mov A, @Temp2
clr C
subb A, #35 ; Subtract 35 (140us) from max throttle
jc program_by_tx_entry_limit
subb A, Temp1 ; Subtract min from max
jnc program_by_tx_entry_store
program_by_tx_entry_limit:
mov A, Temp1 ; Load min
add A, #35 ; Make max 140us higher than min
mov Temp1, #Pgm_Max_Throttle ; Store new max
mov @Temp1, A
program_by_tx_entry_store:
call wait200ms
call erase_and_store_all_in_eeprom
call success_beep_inverted
program_by_tx_entry_wait:
call wait100ms
call find_throttle_gains ; Set throttle gains
ajmp init_no_signal ; Go back
program_by_tx_checked:
; Initialize flash keys to invalid values
mov Flash_Key_1, #0
mov Flash_Key_2, #0
call wait100ms ; Wait for new throttle value
mov Temp1, #1 ; Default stop value
jnb Flags3.PGM_BIDIR, ($+5) ; No - branch
mov Temp1, #5 ; Higher stop value for bidirectional
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, Temp1 ; Below stop?
jc arm_end_beep ; Yes - proceed
jmp arming_start ; No - start over
arm_end_beep:
; Beep arm sequence end signal
clr IE_EA ; Disable all interrupts
call beep_f4 ; Signal that rcpulse is ready
call beep_f4
call beep_f4
setb IE_EA ; Enable all interrupts
call wait200ms
; Clear initial arm variable
mov Initial_Arm, #0
; Armed and waiting for power on
wait_for_power_on:
clr A
mov Power_On_Wait_Cnt_L, A ; Clear wait counter
mov Power_On_Wait_Cnt_H, A
wait_for_power_on_loop:
inc Power_On_Wait_Cnt_L ; Increment low wait counter
mov A, Power_On_Wait_Cnt_L
cpl A
jnz wait_for_power_on_no_beep; Counter wrapping (about 3 sec)
inc Power_On_Wait_Cnt_H ; Increment high wait counter
mov Temp1, #Pgm_Beacon_Delay
mov A, @Temp1
mov Temp1, #25 ; Approximately 1 min
dec A
jz beep_delay_set
mov Temp1, #50 ; Approximately 2 min
dec A
jz beep_delay_set
mov Temp1, #125 ; Approximately 5 min
dec A
jz beep_delay_set
mov Temp1, #250 ; Approximately 10 min
dec A
jz beep_delay_set
mov Power_On_Wait_Cnt_H, #0 ; Reset counter for infinite delay
beep_delay_set:
clr C
mov A, Power_On_Wait_Cnt_H
subb A, Temp1 ; Check against chosen delay
jc wait_for_power_on_no_beep; Has delay elapsed?
call switch_power_off ; Switch power off in case braking is set
call wait1ms
dec Power_On_Wait_Cnt_H ; Decrement high wait counter
mov Power_On_Wait_Cnt_L, #0 ; Set low wait counter
mov Temp1, #Pgm_Beacon_Strength
mov Beep_Strength, @Temp1
clr IE_EA ; Disable all interrupts
call beep_f4 ; Signal that there is no signal
setb IE_EA ; Enable all interrupts
mov Temp1, #Pgm_Beep_Strength
mov Beep_Strength, @Temp1
call wait100ms ; Wait for new RC pulse to be measured
wait_for_power_on_no_beep:
call wait10ms
mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value
jnz wait_for_power_on_not_missing ; If it is not zero - proceed
jmp init_no_signal ; If pulses missing - go back to detect input signal
wait_for_power_on_not_missing:
mov Temp1, #1
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, Temp1 ; Higher than stop (plus some hysteresis)?
jc wait_for_power_on_loop ; No - start over
lcall wait100ms ; Wait to see if start pulse was only a glitch
mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value
jnz ($+5) ; If it is not zero - proceed
ljmp init_no_signal ; If it is zero (pulses missing) - go back to detect input signal
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Start entry point
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
init_start:
clr IE_EA
call switch_power_off
clr A
setb IE_EA
clr A
mov Adc_Conversion_Cnt, A
mov Flags0, A ; Clear flags0
mov Flags1, A ; Clear flags1
mov Demag_Detected_Metric, A ; Clear demag metric
;**** **** **** **** ****
; Motor start beginning
;**** **** **** **** ****
mov Adc_Conversion_Cnt, #8 ; Make sure a temp reading is done
call wait1ms
call start_adc_conversion
read_initial_temp:
jnb ADC0CN0_ADINT, read_initial_temp
Read_Adc_Result ; Read initial temperature
mov A, Temp2
jnz ($+3) ; Is reading below 256?
mov Temp1, A ; Yes - set average temperature value to zero
mov Current_Average_Temp, Temp1 ; Set initial average temperature
call check_temp_voltage_and_limit_power
mov Adc_Conversion_Cnt, #8 ; Make sure a temp reading is done next time
; Set up start operating conditions
clr IE_EA ; Disable interrupts
mov Pwm_Limit, #0FFh ; Set pwm limit to max
call set_startup_pwm
mov Pwm_Limit, Pwm_Limit_Beg
mov Pwm_Limit_By_Rpm, Pwm_Limit_Beg
setb IE_EA
; Begin startup sequence
IF MCU_48MHZ == 1
Set_MCU_Clk_48MHz
ENDIF
jnb Flags3.PGM_BIDIR, init_start_bidir_done ; Check if bidirectional operation
clr Flags3.PGM_DIR_REV ; Set spinning direction. Default fwd
jnb Flags2.RCP_DIR_REV, ($+5) ; Check force direction
setb Flags3.PGM_DIR_REV ; Set spinning direction
init_start_bidir_done:
setb Flags1.STARTUP_PHASE ; Set startup phase flag
mov Startup_Cnt, #0 ; Reset counter
call comm5comm6 ; Initialize commutation
call comm6comm1
call initialize_timing ; Initialize timing
call calc_next_comm_timing ; Set virtual commutation point
call initialize_timing ; Initialize timing
call calc_next_comm_timing
call initialize_timing ; Initialize timing
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Run entry point
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
; Run 1 = B(p-on) + C(n-pwm) - comparator A evaluated
; Out_cA changes from low to high
run1:
call wait_for_comp_out_high ; Wait for high
; setup_comm_wait ; Setup wait time from zero cross to commutation
; evaluate_comparator_integrity ; Check whether comparator reading has been normal
call wait_for_comm ; Wait from zero cross to commutation
call comm1comm2 ; Commutate
call calc_next_comm_timing ; Calculate next timing and wait advance timing wait
; wait_advance_timing ; Wait advance timing and start zero cross wait
; calc_new_wait_times
; wait_before_zc_scan ; Wait zero cross wait and start zero cross timeout
; Run 2 = A(p-on) + C(n-pwm) - comparator B evaluated
; Out_cB changes from high to low
run2:
call wait_for_comp_out_low
; setup_comm_wait
; evaluate_comparator_integrity
jb Flags1.HIGH_RPM, ($+6) ; Skip if high rpm
lcall set_pwm_limit_low_rpm
jnb Flags1.HIGH_RPM, ($+6) ; Do if high rpm
lcall set_pwm_limit_high_rpm
call wait_for_comm
call comm2comm3
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Run 3 = A(p-on) + B(n-pwm) - comparator C evaluated
; Out_cC changes from low to high
run3:
call wait_for_comp_out_high
; setup_comm_wait
; evaluate_comparator_integrity
call wait_for_comm
call comm3comm4
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Run 4 = C(p-on) + B(n-pwm) - comparator A evaluated
; Out_cA changes from high to low
run4:
call wait_for_comp_out_low
; setup_comm_wait
; evaluate_comparator_integrity
call wait_for_comm
call comm4comm5
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Run 5 = C(p-on) + A(n-pwm) - comparator B evaluated
; Out_cB changes from low to high
run5:
call wait_for_comp_out_high
; setup_comm_wait
; evaluate_comparator_integrity
call wait_for_comm
call comm5comm6
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Run 6 = B(p-on) + A(n-pwm) - comparator C evaluated
; Out_cC changes from high to low
run6:
call start_adc_conversion
call wait_for_comp_out_low
; setup_comm_wait
; evaluate_comparator_integrity
call wait_for_comm
call comm6comm1
call check_temp_voltage_and_limit_power
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Check if it is direct startup
jnb Flags1.STARTUP_PHASE, normal_run_checks
; Set spoolup power variables
mov Pwm_Limit, Pwm_Limit_Beg ; Set initial max power
; Check startup counter
mov Temp2, #24 ; Set nominal startup parameters
mov Temp3, #12
clr C
mov A, Startup_Cnt ; Load counter
subb A, Temp2 ; Is counter above requirement?
jc direct_start_check_rcp ; No - proceed
clr Flags1.STARTUP_PHASE ; Clear startup phase flag
setb Flags1.INITIAL_RUN_PHASE ; Set initial run phase flag
mov Initial_Run_Rot_Cntd, Temp3 ; Set initial run rotation count
mov Pwm_Limit, Pwm_Limit_Beg
mov Pwm_Limit_By_Rpm, Pwm_Limit_Beg
jmp normal_run_checks
direct_start_check_rcp:
clr C
mov A, New_Rcp ; Load new pulse value
subb A, #1 ; Check if pulse is below stop value
jc ($+5)
ljmp run1 ; Continue to run
jmp run_to_wait_for_power_on
normal_run_checks:
; Check if it is initial run phase
jnb Flags1.INITIAL_RUN_PHASE, initial_run_phase_done ; If not initial run phase - branch
jb Flags1.DIR_CHANGE_BRAKE, initial_run_phase_done ; If a direction change - branch
; Decrement startup rotaton count
mov A, Initial_Run_Rot_Cntd
dec A
; Check number of initial rotations
jnz normal_run_check_startup_rot ; Branch if counter is not zero
clr Flags1.INITIAL_RUN_PHASE ; Clear initial run phase flag
setb Flags1.MOTOR_STARTED ; Set motor started
jmp run1 ; Continue with normal run
normal_run_check_startup_rot:
mov Initial_Run_Rot_Cntd, A ; Not zero - store counter
clr C
mov A, New_Rcp ; Load new pulse value
subb A, #1 ; Check if pulse is below stop value
jc ($+5)
ljmp run1 ; Continue to run
jmp run_to_wait_for_power_on
initial_run_phase_done:
; Reset stall count
mov Stall_Cnt, #0
; Exit run loop after a given time
mov Temp1, #250
mov Temp2, #Pgm_Brake_On_Stop
mov A, @Temp2
jz ($+4)
mov Temp1, #3 ; About 100ms before stopping when brake is set
clr C
mov A, Rcp_Stop_Cnt ; Load stop RC pulse counter low byte value
subb A, Temp1 ; Is number of stop RC pulses above limit?
jnc run_to_wait_for_power_on ; Yes, go back to wait for poweron
mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value
jz run_to_wait_for_power_on ; If it is zero - go back to wait for poweron
run6_check_dir:
jnb Flags3.PGM_BIDIR, run6_check_speed ; Check if bidirectional operation
jb Flags3.PGM_DIR_REV, run6_check_dir_rev ; Check if actual rotation direction
jb Flags2.RCP_DIR_REV, run6_check_dir_change ; Matches force direction
jmp run6_check_speed
run6_check_dir_rev:
jnb Flags2.RCP_DIR_REV, run6_check_dir_change
jmp run6_check_speed
run6_check_dir_change:
jb Flags1.DIR_CHANGE_BRAKE, run6_check_speed
setb Flags1.DIR_CHANGE_BRAKE ; Set brake flag
mov Pwm_Limit, Pwm_Limit_Beg ; Set max power while braking
jmp run4 ; Go back to run 4, thereby changing force direction
run6_check_speed:
mov Temp1, #0F0h ; Default minimum speed
jnb Flags1.DIR_CHANGE_BRAKE, run6_brake_done; Is it a direction change?
mov Pwm_Limit, Pwm_Limit_Beg ; Set max power while braking
mov Temp1, #20h ; Bidirectional braking termination speed
run6_brake_done:
clr C
mov A, Comm_Period4x_H ; Is Comm_Period4x more than 32ms (~1220 eRPM)?
subb A, Temp1
jnc ($+5) ; Yes - stop or turn direction
ljmp run1 ; No - go back to run 1
jnb Flags1.DIR_CHANGE_BRAKE, run_to_wait_for_power_on ; If it is not a direction change - stop
clr Flags1.DIR_CHANGE_BRAKE ; Clear brake flag
clr Flags3.PGM_DIR_REV ; Set spinning direction. Default fwd
jnb Flags2.RCP_DIR_REV, ($+5) ; Check force direction
setb Flags3.PGM_DIR_REV ; Set spinning direction
setb Flags1.INITIAL_RUN_PHASE
mov Initial_Run_Rot_Cntd, #18
mov Pwm_Limit, Pwm_Limit_Beg ; Set initial max power
jmp run1 ; Go back to run 1
run_to_wait_for_power_on_fail:
inc Stall_Cnt ; Increment stall count
mov A, New_Rcp ; Check if RCP is zero, then it is a normal stop
jz run_to_wait_for_power_on
ajmp run_to_wait_for_power_on_stall_done
run_to_wait_for_power_on:
mov Stall_Cnt, #0
run_to_wait_for_power_on_stall_done:
clr IE_EA
call switch_power_off
mov Flags0, #0 ; Clear flags0
mov Flags1, #0 ; Clear flags1
IF MCU_48MHZ == 1
Set_MCU_Clk_24MHz
ENDIF
setb IE_EA
call wait100ms ; Wait for pwm to be stopped
call switch_power_off
mov Temp1, #Pgm_Brake_On_Stop
mov A, @Temp1
jz run_to_wait_for_power_on_brake_done
AcomFET_on
BcomFET_on
CcomFET_on
run_to_wait_for_power_on_brake_done:
clr C
mov A, Stall_Cnt
subb A, #4
jc jmp_wait_for_power_on
jmp init_no_signal
jmp_wait_for_power_on:
jmp wait_for_power_on ; Go back to wait for power on
;**** **** **** **** **** **** **** **** **** **** **** **** ****
$include (BLHeliPgm.inc) ; Include source code for programming the ESC
$include (BLHeliBootLoad.inc) ; Include source code for bootloader
;**** **** **** **** **** **** **** **** **** **** **** **** ****
CSEG AT 19FDh
reset:
ljmp pgm_start
END