You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

8237 lines
250 KiB

$NOMOD51
;**** **** **** **** ****
;
; BLHeli program for controlling brushless motors in helicopters and multirotors
;
; Copyright 2011, 2012 Steffen Skaug
; This program is distributed under the terms of the GNU General Public License
;
; This file is part of BLHeli.
;
; BLHeli is free software: you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation, either version 3 of the License, or
; (at your option) any later version.
;
; BLHeli is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with BLHeli. If not, see <http://www.gnu.org/licenses/>.
;
;**** **** **** **** ****
;
; The software was initially designed for use with Eflite mCP X, but is now adapted to copters/planes in general
;
; The software was inspired by and started from from Bernard Konze's BLMC: http://home.versanet.de/~bkonze/blc_6a/blc_6a.htm
; And also Simon Kirby's TGY: https://github.com/sim-/tgy
;
; This file is best viewed with tab width set to 5
;
; The input signal can be positive 1kHz, 2kHz, 4kHz, 8kHz or 12kHz PWM (e.g. taken from the "resistor tap" on mCPx)
; And the input signal can be PPM (1-2ms) or OneShot125 (125-250us) at rates up to several hundred Hz.
; The code autodetects the various input modes/frequencies
; The code can also be programmed to accept inverted input signal.
;
; The first lines of the software must be modified according to the chosen environment:
; Uncomment the selected ESC and main/tail/multi mode
; BESCNO EQU "ESC"_"mode"
;
;**** **** **** **** ****
; Revision history:
; - Rev1.0: Initial revision based upon BLHeli for AVR controllers
; - Rev2.0: Changed "Eeprom" initialization, layout and defaults
; Various changes and improvements to comparator reading. Now using timer1 for time from pwm on/off
; Beeps are made louder
; Added programmable low voltage limit
; Added programmable damped tail mode (only for 1S ESCs)
; Added programmable motor rotation direction
; - Rev2.1: (minor changes by 4712)
; Added Disable TX Programming by PC Setup Application
; therfore changed EEPROM_LAYOUT_REVISION = 8
; Added Vdd Monitor as reset source when writing to "EEProm"
; Changed for use of batch file to assemble, link and make hex files
; - Rev2.2: (minor changes by 4712)
; Added Disable Throttle Re-Arming every motor start by PC Setup Application
; - Rev2.3: (minor changes by 4712)
; Added bugfixed (2x CLR C before j(n)c operations)thx Steffen!
; - Rev2.4: Revisions 2.1 to 2.3 integrated
; - Rev3.0: Added PPM (1050us-1866us) as accepted input signal
; Added startup rpm as a programming parameter
; Added startup acceleration as a programming parameter
; Added option for using voltage measurements to compensate motor power
; Added governor target by setup as a governor mode option
; Governor is kept active regardless of rpm
; Smooth governor spoolup/down in arm and setup modes
; Increased governor P and I gain programming ranges
; Increased and changed low voltage limit programming range
; Disabled tx programming entry for all but the first arming sequence after power on
; Made it possible to skip parameters in tx programming by setting throttle midstick
; Made it default not to rearm for every restart
; - Rev3.1: Fixed bug that prevented chosen parameter to be set in tx programming
; - Rev3.2: ...also updated the EEPROM revision parameter
; - Rev3.3: Fixed negative number bug in voltage compensation
; Fixed bug in startup power calculation for non-default power
; Prevented possibility for voltage compensation fighting low voltage limiting
; Applied overall spoolup control to ensure soft spoolup in any mode
; Added a delay of 3 seconds from initiation of main motor stop until new startup is allowed
; Reduced beep power to reduce power consumption for very strong motors/ESCs
; - Rev3.4: Fixed bug that prevented full power in governor arm and setup modes
; Increased NFETON_DELAY for XP_7A and XP_12A to allow for more powerful fets
; Increased initial spoolup power, and linked to startup power
; - Rev4.0: Fixed bug that made tail tx program beeps very weak
; Added thermal protection feature
; Governor P and I gain ranges are extended up to 8.0x gain
; Startup sequence is aborted upon zero throttle
; Avoided voltage compensation function induced latency for tail when voltage compensation is not enabled
; Improved input signal frequency detection robustness
; - Rev4.1: Increased thermal protection temperature limits
; - Rev5.0: Added multi(copter) operating mode. TAIL define changed to MODE with three modes: MAIN, TAIL and MULTI
; Added programmable commutation timing
; Added a damped light mode that has less damping, but that can be used with all escs
; Added programmable damping force
; Added thermal protection for startup too
; Added wait beeps when waiting more than 30 sec for throttle above zero (after having been armed)
; Modified tail idling to provide option for very low speeds
; Changed PPM range to 1150-1830us
; Arming sequence is dropped for PPM input, unless it is governor arm mode
; Loss of input signal will immediately stop the motor for PPM input
; Bug corrected in Turnigy Plush 6A voltage measurement setup
; FET switching delays are set for original fets. Stronger/doubled/tripled etc fets may require faster pfet off switching
; Miscellaneous other changes
; - Rev6.0: Reverted comparator reading routine to rev5.0 equivalent, in order to avoid tail motor stops
; Added governor range programmability
; Implemented startup retry sequence with varying startup power for multi mode
; In damped light mode, damping is now applied to the active nfet phase for fully damped capable ESCs
; - Rev6.1: Added input signal qualification criteria for PPM, to avoid triggering on noise spikes (fix for plush hardware)
; Changed main and multi mode stop criteria. Will now be in run mode, even if RC pulse input is zero
; Fixed bug in commutation that caused rough running in damped light mode
; Miscellaneous other changes
; - Rev7.0 Added direct startup mode programmability
; Added throttle calibration. Min>=1000us and Max<=2000us. Difference must be >520us, otherwise max is shifted so that difference=520us
; Added programmable throttle change rate
; Added programmable beep strength, beacon strength and beacon delay
; Reduced power step to full power significantly
; Miscellaneous other changes
; - Rev8.0 Added a 2 second delay after power up, to wait for receiver initialization
; Added a programming option for disabling low voltage limit, and made it default for MULTI
; Added programable demag compensation, using the concept of SimonK
; Improved robustness against noisy input signal
; Refined direct startup
; Removed voltage compensation
; Miscellaneous other changes
; - Rev9.0 Increased programming range for startup power, and made its default ESC dependent
; Made default startup method ESC dependent
; Even more smooth and gentle spoolup for MAIN, to suit larger helis
; Improved transition from stepped startup to run
; Refined direct startup
; - Rev9.1 Fixed bug that changed FW revision after throttle calibration or TX programming
; - Rev9.2 Altered timing of throttle calibration in order to work with MultiWii calibration firmware
; Reduced main spoolup time to around 5 seconds
; Changed default beacon delay to 3 minutes
; - Rev9.3 Fixed bug in Plush 60/80A temperature reading, that caused failure in operation above 4S
; Corrected temperature limit for HiModel cool 22/33/41A, RCTimer 6A, Skywalker 20/40A, Turnigy AE45A, Plush 40/60/80A. Limit was previously set too high
; - Rev9.4 Improved timing for increased maximum rpm limit
; - Rev10.0 Added closed loop mode for multi
; Added high/low BEC voltage option (for the ESCs where HW supports it)
; Added method of resetting all programmed parameter values to defaults by TX programming
; Added Turnigy K-force 40A and Turnigy K-force 120A HV ESCs
; Enabled fully damped mode for several ESCs
; Extended startup power range downwards to enable very smooth start for large heli main motors
; Extended damping force with a highest setting
; Corrected temperature limits for F310 chips (Plush 40A and AE 45A)
; Implemented temperature reading average in order to avoid problems with ADC noise on Skywalkers
; Increased switching delays for XP 7A fast, in order to avoid cross conduction of N and P fets
; Miscellaneous other changes
; - Rev10.1 Relaxed RC signal jitter requirement during frequency measurement
; Corrected bug that prevented using governor low
; Enabled vdd monitor always, in order to reduce likelihood of accidental overwriting of adjustments
; Fixed bug that caused stop for PPM input above 2048us, and moved upper accepted limit to 2160us
; - Rev10.2 Corrected temperature limit for AE20-30/XP7-25, where limit was too high
; Corrected temperature limit for 120HV, where limit was too low
; Fixed bug that caused AE20/25/30A not to run in reverse
; - Rev10.3 Removed vdd monitor for 1S capable ESCs, in order to avoid brownouts/resets
; Made auto bailout spoolup for main more smooth
; - Rev10.4 Ensured that main spoolup and governor activation will always be smooth, regardless of throttle input
; Added capability to operate on 12kHz input signal too
; - Rev11.0 Fixed bug of programming default values for governor in MULTI mode
; Disabled interrupts explicitly some places, to avoid possibilities for unintentional fet switching
; Changed interrupt disable strategy, to always allow pwm interrupts, to avoid noise when running at low rpms
; Added governor middle range for MAIN mode
; Added bidirectional mode for TAIL and MULTI mode with PPM input
; Changed and improved demag compensation
; Miscellaneous other changes
; - Rev11.1 Fixed bug of slow acceleration response for MAIN mode running without governor
; Fixed bug with PWM input, where throttle remains high even when zeroing throttle (seen on V922 tail)
; Fixed bug in bidirectional operation, where direction change could cause reset
; Improved autorotation bailout for MAIN
; Reduced min speed back to 1220 erpm
; Misc code cleanups
; - Rev11.2 Fixed throttle calibration bug
; Added high side driver precharge for all-nfet ESCs
; Optimized timing in general and for demag compensation in particular
; Auto bailout functionality modified
; Governor is deactivated for throttle inputs below 10%
; Increased beacon delay times
; - Rev12.0 Added programmable main spoolup time
; Added programmable temperature protection enable
; Bidirectional mode stop/start improved. Motor is now stopped before starting
; Power is limited for very low rpms (when BEMF is low), in order to avoid sync loss
; Damped light mode is made more smooth and quiet, particularly at low and high rpms
; Comparator signal qualification scheme is changed
; Demag compensation scheme is significantly changed
; Increased jitter tolerance for PPM frequency measurement
; Fully damped mode removed, and damped light only supported on damped capable ESCs
; Default tail mode changed to damped light
; Miscellaneous other changes
; - Rev12.1 Fixed bug in tail code
; Improved startup for Atmel
; Added support for multiple high BEC voltages
; Added support for RPM output
; - Rev12.2 Improved running smoothness, particularly for damped light
; Avoiding lockup at full throttle when input signal is noisy
; Avoiding detection of 1-wire programming signal as valid throttle signal
; - Rev13.0 Removed stepped start
; Removed throttle change rate and damping force parameters
; Added support for OneShot125
; Improved commutation timing accuracy
; - Rev13.1 Removed startup ramp for MULTI
; Improved startup for some odd ESCs
; - Rev13.2 Still tweaking startup to make it more reliable and faster for all ESC/motor combos
; Increased deadband for bidirectional operation
; Relaxed signal detection criteria
; Added support for running 48MHz capable SiLabs MCUs at 48MHz
; Added bootlader to SiLabs code
; Miscellaneous other changes
; - Rev14.0 Improved running at high timing
; Improved running at high RPMs and increased max RPM limit
; Avoid being locked in bootloader (implemented in Suite 13202)
; Improved reliability of 3D (bidirectional) mode and startup
; Smoother running and greatly reduced step to full power in damped light mode
; Removed low voltage limiting for MULTI
; Added pwm dither parameter
; Added setting for enable/disable of low RPM power protection
; Added setting for enable/disable of PWM input
; Better AFW and damping for some ESCs (that have a slow high side driver)
; Miscellaneous other changes
; - Rev14.1 Fixed max throttle calibration bug (for non-oneshot)
; Fixed some closed loop mode bugs
; Relaxed signal jitter requirement for looptimes below 1000
; Added skipping of damping fet switching near max power, for improved high end throttle linearity, using the concept of SimonK
; Improved sync hold at high rpms
; - Rev14.2 Added stalled motor shutoff after about 10 seconds (for tail and multi code with PPM input)
; Greatly increased maximum rpm limit, and added rpm limiting at 250k erpm (48MHz MCUs at 400k erpm)
; Improved bidirectional operation
; - Rev14.3 Moved reset vector to be just before the settings segment, in order to better recover from partially failed flashing operation
; Added 100ms intialization delay for the Graupner Ultra 20A ESC
; Shortened stall detect time to about 5sec, and prevented going into tx programming after a stall
; Optimizations of software timing and running reliability
; - Rev14.4 Improved startup, particularly for larger motors
; Improved running at very high rpms
; Made damped light default for MULTI on ESCs that support it
; Miscellaneous other changes
; - Rev14.5 Longer between beacon beeps (to reduce motor heating), and now again beeping on two motor phases
; Implemented programmable brake on zero throttle
; Implemented hardware reload of commutation timers, to reduce sensitivity to interrupt activity on high rpms
; Implemented support for EN/PWM style fet drivers
; Slightly modified throttle calibration
; Improved startup, particularly for small motors
; Improved smoothness
; - Rev14.6 Fixed bug that caused tail motor not to stop
; Fixed bug that caused brake not to work for low side pwm ESCs
; Fixed bug where noisy input signal could cause loss of sync
; Increased fet deadtime a bit for the LB20A and the LB20A pro
; Made low rpm power limiting programmable through the startup power parameter
; - Rev14.7 Beeps can be turned off by programming beep strength to 1
; Throttle cal difference is checked to be above required minimum before storing. Throttle cal max is not stored until successful min throttle cal
; In order to have a good code for fixed wing planes, that has low voltage limiting, a main code spoolup time setting of 0 is made fast
; Improved protection of bootloader and generally reduced risk of flash corruption
; Some small changes for improved sync hold
; - Rev14.8 Fixed bug where bootloader operation could be blocked by a defective "eeprom" signature
; - Rev14.9 Improved bidirectional mode for high input signal rates
;
;
;**** **** **** **** ****
; Up to 8K Bytes of In-System Self-Programmable Flash
; Up to 768 Bytes Internal SRAM
;
;**** **** **** **** ****
; Master clock is internal 24MHz oscillator (or 48MHz, for which the times below are halved)
; Timer 0 (167/500ns counts) always counts up and is used for
; - PWM generation
; Timer 2 (500ns counts) always counts up and is used for
; - RC pulse timeout/skip counts and commutation times
; Timer 3 (500ns counts) always counts up and is used for
; - Commutation timeouts
; PCA0 (500ns counts) always counts up and is used for
; - RC pulse measurement
;
;**** **** **** **** ****
; Interrupt handling
; The C8051 does not disable interrupts when entering an interrupt routine.
; Also some interrupt flags need to be cleared by software
; The code disables interrupts in interrupt routines, in order to avoid too nested interrupts
; - Interrupts are disabled during beeps, to avoid audible interference from interrupts
; - RC pulse interrupts are periodically disabled in order to reduce interference with pwm interrupts.
;
;**** **** **** **** ****
; Motor control:
; - Brushless motor control with 6 states for each electrical 360 degrees
; - An advance timing of 0deg has zero cross 30deg after one commutation and 30deg before the next
; - Timing advance in this implementation is set to 15deg nominally
; - "Damped" commutation schemes are available, where more than one pfet is on when pwm is off. This will absorb energy from bemf and make step settling more damped.
; Motor sequence starting from zero crossing:
; - Timer wait: Wt_Comm 15deg ; Time to wait from zero cross to actual commutation
; - Timer wait: Wt_Advance 15deg ; Time to wait for timing advance. Nominal commutation point is after this
; - Timer wait: Wt_Zc_Scan 7.5deg ; Time to wait before looking for zero cross
; - Scan for zero cross 22.5deg , Nominal, with some motor variations
;
; Motor startup:
; There is a startup phase and an initial run phase, before normal bemf commutation run begins.
;
;**** **** **** **** ****
; List of enumerated supported ESCs and modes (main, tail or multi)
XP_3A_Main EQU 1
XP_3A_Tail EQU 2
XP_3A_Multi EQU 3
XP_7A_Main EQU 4
XP_7A_Tail EQU 5
XP_7A_Multi EQU 6
XP_7A_Fast_Main EQU 7
XP_7A_Fast_Tail EQU 8
XP_7A_Fast_Multi EQU 9
XP_12A_Main EQU 10
XP_12A_Tail EQU 11
XP_12A_Multi EQU 12
XP_18A_Main EQU 13
XP_18A_Tail EQU 14
XP_18A_Multi EQU 15
XP_25A_Main EQU 16
XP_25A_Tail EQU 17
XP_25A_Multi EQU 18
XP_35A_SW_Main EQU 19
XP_35A_SW_Tail EQU 20
XP_35A_SW_Multi EQU 21
DP_3A_Main EQU 22
DP_3A_Tail EQU 23
DP_3A_Multi EQU 24
Supermicro_3p5A_Main EQU 25
Supermicro_3p5A_Tail EQU 26
Supermicro_3p5A_Multi EQU 27
Turnigy_Plush_6A_Main EQU 28
Turnigy_Plush_6A_Tail EQU 29
Turnigy_Plush_6A_Multi EQU 30
Turnigy_Plush_10A_Main EQU 31
Turnigy_Plush_10A_Tail EQU 32
Turnigy_Plush_10A_Multi EQU 33
Turnigy_Plush_12A_Main EQU 34
Turnigy_Plush_12A_Tail EQU 35
Turnigy_Plush_12A_Multi EQU 36
Turnigy_Plush_18A_Main EQU 37
Turnigy_Plush_18A_Tail EQU 38
Turnigy_Plush_18A_Multi EQU 39
Turnigy_Plush_25A_Main EQU 40
Turnigy_Plush_25A_Tail EQU 41
Turnigy_Plush_25A_Multi EQU 42
Turnigy_Plush_30A_Main EQU 43
Turnigy_Plush_30A_Tail EQU 44
Turnigy_Plush_30A_Multi EQU 45
Turnigy_Plush_40A_Main EQU 46
Turnigy_Plush_40A_Tail EQU 47
Turnigy_Plush_40A_Multi EQU 48
Turnigy_Plush_60A_Main EQU 49
Turnigy_Plush_60A_Tail EQU 50
Turnigy_Plush_60A_Multi EQU 51
Turnigy_Plush_80A_Main EQU 52
Turnigy_Plush_80A_Tail EQU 53
Turnigy_Plush_80A_Multi EQU 54
Turnigy_Plush_Nfet_18A_Main EQU 55
Turnigy_Plush_Nfet_18A_Tail EQU 56
Turnigy_Plush_Nfet_18A_Multi EQU 57
Turnigy_Plush_Nfet_25A_Main EQU 58
Turnigy_Plush_Nfet_25A_Tail EQU 59
Turnigy_Plush_Nfet_25A_Multi EQU 60
Turnigy_Plush_Nfet_30A_Main EQU 61
Turnigy_Plush_Nfet_30A_Tail EQU 62
Turnigy_Plush_Nfet_30A_Multi EQU 63
Turnigy_AE_20A_Main EQU 64
Turnigy_AE_20A_Tail EQU 65
Turnigy_AE_20A_Multi EQU 66
Turnigy_AE_25A_Main EQU 67
Turnigy_AE_25A_Tail EQU 68
Turnigy_AE_25A_Multi EQU 69
Turnigy_AE_30A_Main EQU 70
Turnigy_AE_30A_Tail EQU 71
Turnigy_AE_30A_Multi EQU 72
Turnigy_AE_45A_Main EQU 73
Turnigy_AE_45A_Tail EQU 74
Turnigy_AE_45A_Multi EQU 75
Turnigy_KForce_40A_Main EQU 76
Turnigy_KForce_40A_Tail EQU 77
Turnigy_KForce_40A_Multi EQU 78
Turnigy_KForce_70A_HV_Main EQU 79
Turnigy_KForce_70A_HV_Tail EQU 80
Turnigy_KForce_70A_HV_Multi EQU 81
Turnigy_KForce_120A_HV_Main EQU 82
Turnigy_KForce_120A_HV_Tail EQU 83
Turnigy_KForce_120A_HV_Multi EQU 84
Turnigy_KForce_120A_HV_v2_Main EQU 85
Turnigy_KForce_120A_HV_v2_Tail EQU 86
Turnigy_KForce_120A_HV_v2_Multi EQU 87
Skywalker_20A_Main EQU 88
Skywalker_20A_Tail EQU 89
Skywalker_20A_Multi EQU 90
Skywalker_40A_Main EQU 91
Skywalker_40A_Tail EQU 92
Skywalker_40A_Multi EQU 93
HiModel_Cool_22A_Main EQU 94
HiModel_Cool_22A_Tail EQU 95
HiModel_Cool_22A_Multi EQU 96
HiModel_Cool_33A_Main EQU 97
HiModel_Cool_33A_Tail EQU 98
HiModel_Cool_33A_Multi EQU 99
HiModel_Cool_41A_Main EQU 100
HiModel_Cool_41A_Tail EQU 101
HiModel_Cool_41A_Multi EQU 102
RCTimer_6A_Main EQU 103
RCTimer_6A_Tail EQU 104
RCTimer_6A_Multi EQU 105
Align_RCE_BL15X_Main EQU 106
Align_RCE_BL15X_Tail EQU 107
Align_RCE_BL15X_Multi EQU 108
Align_RCE_BL15P_Main EQU 109
Align_RCE_BL15P_Tail EQU 110
Align_RCE_BL15P_Multi EQU 111
Align_RCE_BL35X_Main EQU 112
Align_RCE_BL35X_Tail EQU 113
Align_RCE_BL35X_Multi EQU 114
Align_RCE_BL35P_Main EQU 115
Align_RCE_BL35P_Tail EQU 116
Align_RCE_BL35P_Multi EQU 117
Gaui_GE_183_18A_Main EQU 118
Gaui_GE_183_18A_Tail EQU 119
Gaui_GE_183_18A_Multi EQU 120
H_King_10A_Main EQU 121
H_King_10A_Tail EQU 122
H_King_10A_Multi EQU 123
H_King_20A_Main EQU 124
H_King_20A_Tail EQU 125
H_King_20A_Multi EQU 126
H_King_35A_Main EQU 127
H_King_35A_Tail EQU 128
H_King_35A_Multi EQU 129
H_King_50A_Main EQU 130
H_King_50A_Tail EQU 131
H_King_50A_Multi EQU 132
Polaris_Thunder_12A_Main EQU 133
Polaris_Thunder_12A_Tail EQU 134
Polaris_Thunder_12A_Multi EQU 135
Polaris_Thunder_20A_Main EQU 136
Polaris_Thunder_20A_Tail EQU 137
Polaris_Thunder_20A_Multi EQU 138
Polaris_Thunder_30A_Main EQU 139
Polaris_Thunder_30A_Tail EQU 140
Polaris_Thunder_30A_Multi EQU 141
Polaris_Thunder_40A_Main EQU 142
Polaris_Thunder_40A_Tail EQU 143
Polaris_Thunder_40A_Multi EQU 144
Polaris_Thunder_60A_Main EQU 145
Polaris_Thunder_60A_Tail EQU 146
Polaris_Thunder_60A_Multi EQU 147
Polaris_Thunder_80A_Main EQU 148
Polaris_Thunder_80A_Tail EQU 149
Polaris_Thunder_80A_Multi EQU 150
Polaris_Thunder_100A_Main EQU 151
Polaris_Thunder_100A_Tail EQU 152
Polaris_Thunder_100A_Multi EQU 153
Platinum_Pro_30A_Main EQU 154
Platinum_Pro_30A_Tail EQU 155
Platinum_Pro_30A_Multi EQU 156
Platinum_Pro_150A_Main EQU 157
Platinum_Pro_150A_Tail EQU 158
Platinum_Pro_150A_Multi EQU 159
Platinum_50Av3_Main EQU 160
Platinum_50Av3_Tail EQU 161
Platinum_50Av3_Multi EQU 162
EAZY_3Av2_Main EQU 163
EAZY_3Av2_Tail EQU 164
EAZY_3Av2_Multi EQU 165
Tarot_30A_Main EQU 166
Tarot_30A_Tail EQU 167
Tarot_30A_Multi EQU 168
SkyIII_30A_Main EQU 169
SkyIII_30A_Tail EQU 170
SkyIII_30A_Multi EQU 171
EMAX_20A_Main EQU 172
EMAX_20A_Tail EQU 173
EMAX_20A_Multi EQU 174
EMAX_40A_Main EQU 175
EMAX_40A_Tail EQU 176
EMAX_40A_Multi EQU 177
EMAX_Nano_20A_Main EQU 178
EMAX_Nano_20A_Tail EQU 179
EMAX_Nano_20A_Multi EQU 180
EMAX_Lightning_20A_Main EQU 181
EMAX_Lightning_20A_Tail EQU 182
EMAX_Lightning_20A_Multi EQU 183
XRotor_10A_Main EQU 184
XRotor_10A_Tail EQU 185
XRotor_10A_Multi EQU 186
XRotor_20A_Main EQU 187
XRotor_20A_Tail EQU 188
XRotor_20A_Multi EQU 189
XRotor_40A_Main EQU 190
XRotor_40A_Tail EQU 191
XRotor_40A_Multi EQU 192
MDRX62H_Main EQU 193
MDRX62H_Tail EQU 194
MDRX62H_Multi EQU 195
RotorGeeks_20A_Main EQU 196
RotorGeeks_20A_Tail EQU 197
RotorGeeks_20A_Multi EQU 198
RotorGeeks_20A_Plus_Main EQU 199
RotorGeeks_20A_Plus_Tail EQU 200
RotorGeeks_20A_Plus_Multi EQU 201
Flycolor_Fairy_6A_Main EQU 202
Flycolor_Fairy_6A_Tail EQU 203
Flycolor_Fairy_6A_Multi EQU 204
Flycolor_Fairy_30A_Main EQU 205
Flycolor_Fairy_30A_Tail EQU 206
Flycolor_Fairy_30A_Multi EQU 207
Flycolor_Fairy_V2_30A_Main EQU 208
Flycolor_Fairy_V2_30A_Tail EQU 209
Flycolor_Fairy_V2_30A_Multi EQU 210
Flycolor_Raptor_20A_Main EQU 211
Flycolor_Raptor_20A_Tail EQU 212
Flycolor_Raptor_20A_Multi EQU 213
Flycolor_Raptor_390_20A_Main EQU 214
Flycolor_Raptor_390_20A_Tail EQU 215
Flycolor_Raptor_390_20A_Multi EQU 216
FVT_Littlebee_12A_Main EQU 217
FVT_Littlebee_12A_Tail EQU 218
FVT_Littlebee_12A_Multi EQU 219
FVT_Littlebee_20A_Main EQU 220
FVT_Littlebee_20A_Tail EQU 221
FVT_Littlebee_20A_Multi EQU 222
FVT_Littlebee_20A_Pro_Main EQU 223
FVT_Littlebee_20A_Pro_Tail EQU 224
FVT_Littlebee_20A_Pro_Multi EQU 225
FVT_Littlebee_30A_Main EQU 226
FVT_Littlebee_30A_Tail EQU 227
FVT_Littlebee_30A_Multi EQU 228
Graupner_Ultra_20A_Main EQU 229
Graupner_Ultra_20A_Tail EQU 230
Graupner_Ultra_20A_Multi EQU 231
F85_3A_Main EQU 232
F85_3A_Tail EQU 233
F85_3A_Multi EQU 234
ZTW_Spider_Pro_20A_Main EQU 235
ZTW_Spider_Pro_20A_Tail EQU 236
ZTW_Spider_Pro_20A_Multi EQU 237
ZTW_Spider_Pro_20A_Premium_Main EQU 238
ZTW_Spider_Pro_20A_Premium_Tail EQU 239
ZTW_Spider_Pro_20A_Premium_Multi EQU 240
ZTW_Spider_Pro_20A_HV_Main EQU 241
ZTW_Spider_Pro_20A_HV_Tail EQU 242
ZTW_Spider_Pro_20A_HV_Multi EQU 243
ZTW_Spider_Pro_30A_HV_Main EQU 244
ZTW_Spider_Pro_30A_HV_Tail EQU 245
ZTW_Spider_Pro_30A_HV_Multi EQU 246
DYS_XM20A_Main EQU 247
DYS_XM20A_Tail EQU 248
DYS_XM20A_Multi EQU 249
Oversky_MR_20A_Main EQU 250
Oversky_MR_20A_Tail EQU 251
Oversky_MR_20A_Multi EQU 252
Oversky_MR_20A_Pro_Main EQU 253
Oversky_MR_20A_Pro_Tail EQU 254
Oversky_MR_20A_Pro_Multi EQU 255
TBS_Cube_12A_Main EQU 256
TBS_Cube_12A_Tail EQU 257
TBS_Cube_12A_Multi EQU 258
DALRC_XR20A_Main EQU 259
DALRC_XR20A_Tail EQU 260
DALRC_XR20A_Multi EQU 261
AIKON_Boltlite_30A_Main EQU 262
AIKON_Boltlite_30A_Tail EQU 263
AIKON_Boltlite_30A_Multi EQU 264
Align_MR25_15A_Main EQU 265
Align_MR25_15A_Tail EQU 266
Align_MR25_15A_Multi EQU 267
Servoking_Monster_30A_Main EQU 268
Servoking_Monster_30A_Tail EQU 269
Servoking_Monster_30A_Multi EQU 270
Servoking_Monster_30A_Pro_Main EQU 271
Servoking_Monster_30A_Pro_Tail EQU 272
Servoking_Monster_30A_Pro_Multi EQU 273
Servoking_Monster_70A_Pro_Main EQU 274
Servoking_Monster_70A_Pro_Tail EQU 275
Servoking_Monster_70A_Pro_Multi EQU 276
Servoking_Monster_80A_Main EQU 277
Servoking_Monster_80A_Tail EQU 278
Servoking_Monster_80A_Multi EQU 279
HTIRC_Hummingbird_12A_Main EQU 280
HTIRC_Hummingbird_12A_Tail EQU 281
HTIRC_Hummingbird_12A_Multi EQU 282
HTIRC_Hummingbird_20A_Main EQU 283
HTIRC_Hummingbird_20A_Tail EQU 284
HTIRC_Hummingbird_20A_Multi EQU 285
HTIRC_Hummingbird_30A_Pro_Main EQU 286
HTIRC_Hummingbird_30A_Pro_Tail EQU 287
HTIRC_Hummingbird_30A_Pro_Multi EQU 288
;**** **** **** **** ****
; Select the ESC and mode to use (or unselect all for use with external batch compile file)
;BESCNO EQU XP_3A_Main
;BESCNO EQU XP_3A_Tail
;BESCNO EQU XP_3A_Multi
;BESCNO EQU XP_7A_Main
;BESCNO EQU XP_7A_Tail
;BESCNO EQU XP_7A_Multi
;BESCNO EQU XP_7A_Fast_Main
;BESCNO EQU XP_7A_Fast_Tail
;BESCNO EQU XP_7A_Fast_Multi
;BESCNO EQU XP_12A_Main
;BESCNO EQU XP_12A_Tail
;BESCNO EQU XP_12A_Multi
;BESCNO EQU XP_18A_Main
;BESCNO EQU XP_18A_Tail
;BESCNO EQU XP_18A_Multi
;BESCNO EQU XP_25A_Main
;BESCNO EQU XP_25A_Tail
;BESCNO EQU XP_25A_Multi
;BESCNO EQU XP_35A_SW_Main
;BESCNO EQU XP_35A_SW_Tail
;BESCNO EQU XP_35A_SW_Multi
;BESCNO EQU DP_3A_Main
;BESCNO EQU DP_3A_Tail
;BESCNO EQU DP_3A_Multi
;BESCNO EQU Supermicro_3p5A_Main
;BESCNO EQU Supermicro_3p5A_Tail
;BESCNO EQU Supermicro_3p5A_Multi
;BESCNO EQU Turnigy_Plush_6A_Main
;BESCNO EQU Turnigy_Plush_6A_Tail
;BESCNO EQU Turnigy_Plush_6A_Multi
;BESCNO EQU Turnigy_Plush_10A_Main
;BESCNO EQU Turnigy_Plush_10A_Tail
;BESCNO EQU Turnigy_Plush_10A_Multi
;BESCNO EQU Turnigy_Plush_12A_Main
;BESCNO EQU Turnigy_Plush_12A_Tail
;BESCNO EQU Turnigy_Plush_12A_Multi
;BESCNO EQU Turnigy_Plush_18A_Main
;BESCNO EQU Turnigy_Plush_18A_Tail
;BESCNO EQU Turnigy_Plush_18A_Multi
;BESCNO EQU Turnigy_Plush_25A_Main
;BESCNO EQU Turnigy_Plush_25A_Tail
;BESCNO EQU Turnigy_Plush_25A_Multi
;BESCNO EQU Turnigy_Plush_30A_Main
;BESCNO EQU Turnigy_Plush_30A_Tail
;BESCNO EQU Turnigy_Plush_30A_Multi
;BESCNO EQU Turnigy_Plush_40A_Main
;BESCNO EQU Turnigy_Plush_40A_Tail
;BESCNO EQU Turnigy_Plush_40A_Multi
;BESCNO EQU Turnigy_Plush_60A_Main
;BESCNO EQU Turnigy_Plush_60A_Tail
;BESCNO EQU Turnigy_Plush_60A_Multi
;BESCNO EQU Turnigy_Plush_80A_Main
;BESCNO EQU Turnigy_Plush_80A_Tail
;BESCNO EQU Turnigy_Plush_80A_Multi
;BESCNO EQU Turnigy_Plush_Nfet_18A_Main
;BESCNO EQU Turnigy_Plush_Nfet_18A_Tail
;BESCNO EQU Turnigy_Plush_Nfet_18A_Multi
;BESCNO EQU Turnigy_Plush_Nfet_25A_Main
;BESCNO EQU Turnigy_Plush_Nfet_25A_Tail
;BESCNO EQU Turnigy_Plush_Nfet_25A_Multi
;BESCNO EQU Turnigy_Plush_Nfet_30A_Main
;BESCNO EQU Turnigy_Plush_Nfet_30A_Tail
;BESCNO EQU Turnigy_Plush_Nfet_30A_Multi
;BESCNO EQU Turnigy_AE_20A_Main
;BESCNO EQU Turnigy_AE_20A_Tail
;BESCNO EQU Turnigy_AE_20A_Multi
;BESCNO EQU Turnigy_AE_25A_Main
;BESCNO EQU Turnigy_AE_25A_Tail
;BESCNO EQU Turnigy_AE_25A_Multi
;BESCNO EQU Turnigy_AE_30A_Main
;BESCNO EQU Turnigy_AE_30A_Tail
;BESCNO EQU Turnigy_AE_30A_Multi
;BESCNO EQU Turnigy_AE_45A_Main
;BESCNO EQU Turnigy_AE_45A_Tail
;BESCNO EQU Turnigy_AE_45A_Multi
;BESCNO EQU Turnigy_KForce_40A_Main
;BESCNO EQU Turnigy_KForce_40A_Tail
;BESCNO EQU Turnigy_KForce_40A_Multi
;BESCNO EQU Turnigy_KForce_70A_HV_Main
;BESCNO EQU Turnigy_KForce_70A_HV_Tail
;BESCNO EQU Turnigy_KForce_70A_HV_Multi
;BESCNO EQU Turnigy_KForce_120A_HV_Main
;BESCNO EQU Turnigy_KForce_120A_HV_Tail
;BESCNO EQU Turnigy_KForce_120A_HV_Multi
;BESCNO EQU Turnigy_KForce_120A_HV_v2_Main
;BESCNO EQU Turnigy_KForce_120A_HV_v2_Tail
;BESCNO EQU Turnigy_KForce_120A_HV_v2_Multi
;BESCNO EQU Skywalker_20A_Main
;BESCNO EQU Skywalker_20A_Tail
;BESCNO EQU Skywalker_20A_Multi
;BESCNO EQU Skywalker_40A_Main
;BESCNO EQU Skywalker_40A_Tail
;BESCNO EQU Skywalker_40A_Multi
;BESCNO EQU HiModel_Cool_22A_Main
;BESCNO EQU HiModel_Cool_22A_Tail
;BESCNO EQU HiModel_Cool_22A_Multi
;BESCNO EQU HiModel_Cool_33A_Main
;BESCNO EQU HiModel_Cool_33A_Tail
;BESCNO EQU HiModel_Cool_33A_Multi
;BESCNO EQU HiModel_Cool_41A_Main
;BESCNO EQU HiModel_Cool_41A_Tail
;BESCNO EQU HiModel_Cool_41A_Multi
;BESCNO EQU RCTimer_6A_Main
;BESCNO EQU RCTimer_6A_Tail
;BESCNO EQU RCTimer_6A_Multi
;BESCNO EQU Align_RCE_BL15X_Main
;BESCNO EQU Align_RCE_BL15X_Tail
;BESCNO EQU Align_RCE_BL15X_Multi
;BESCNO EQU Align_RCE_BL15P_Main
;BESCNO EQU Align_RCE_BL15P_Tail
;BESCNO EQU Align_RCE_BL15P_Multi
;BESCNO EQU Align_RCE_BL35X_Main
;BESCNO EQU Align_RCE_BL35X_Tail
;BESCNO EQU Align_RCE_BL35X_Multi
;BESCNO EQU Align_RCE_BL35P_Main
;BESCNO EQU Align_RCE_BL35P_Tail
;BESCNO EQU Align_RCE_BL35P_Multi
;BESCNO EQU Gaui_GE_183_18A_Main
;BESCNO EQU Gaui_GE_183_18A_Tail
;BESCNO EQU Gaui_GE_183_18A_Multi
;BESCNO EQU H_King_10A_Main
;BESCNO EQU H_King_10A_Tail
;BESCNO EQU H_King_10A_Multi
;BESCNO EQU H_King_20A_Main
;BESCNO EQU H_King_20A_Tail
;BESCNO EQU H_King_20A_Multi
;BESCNO EQU H_King_35A_Main
;BESCNO EQU H_King_35A_Tail
;BESCNO EQU H_King_35A_Multi
;BESCNO EQU H_King_50A_Main
;BESCNO EQU H_King_50A_Tail
;BESCNO EQU H_King_50A_Multi
;BESCNO EQU Polaris_Thunder_12A_Main
;BESCNO EQU Polaris_Thunder_12A_Tail
;BESCNO EQU Polaris_Thunder_12A_Multi
;BESCNO EQU Polaris_Thunder_20A_Main
;BESCNO EQU Polaris_Thunder_20A_Tail
;BESCNO EQU Polaris_Thunder_20A_Multi
;BESCNO EQU Polaris_Thunder_30A_Main
;BESCNO EQU Polaris_Thunder_30A_Tail
;BESCNO EQU Polaris_Thunder_30A_Multi
;BESCNO EQU Polaris_Thunder_40A_Main
;BESCNO EQU Polaris_Thunder_40A_Tail
;BESCNO EQU Polaris_Thunder_40A_Multi
;BESCNO EQU Polaris_Thunder_60A_Main
;BESCNO EQU Polaris_Thunder_60A_Tail
;BESCNO EQU Polaris_Thunder_60A_Multi
;BESCNO EQU Polaris_Thunder_80A_Main
;BESCNO EQU Polaris_Thunder_80A_Tail
;BESCNO EQU Polaris_Thunder_80A_Multi
;BESCNO EQU Polaris_Thunder_100A_Main
;BESCNO EQU Polaris_Thunder_100A_Tail
;BESCNO EQU Polaris_Thunder_100A_Multi
;BESCNO EQU Platinum_Pro_30A_Main
;BESCNO EQU Platinum_Pro_30A_Tail
;BESCNO EQU Platinum_Pro_30A_Multi
;BESCNO EQU Platinum_Pro_150A_Main
;BESCNO EQU Platinum_Pro_150A_Tail
;BESCNO EQU Platinum_Pro_150A_Multi
;BESCNO EQU Platinum_50Av3_Main
;BESCNO EQU Platinum_50Av3_Tail
;BESCNO EQU Platinum_50Av3_Multi
;BESCNO EQU EAZY_3Av2_Main
;BESCNO EQU EAZY_3Av2_Tail
;BESCNO EQU EAZY_3Av2_Multi
;BESCNO EQU Tarot_30A_Main
;BESCNO EQU Tarot_30A_Tail
;BESCNO EQU Tarot_30A_Multi
;BESCNO EQU SkyIII_30A_Main
;BESCNO EQU SkyIII_30A_Tail
;BESCNO EQU SkyIII_30A_Multi
;BESCNO EQU EMAX_20A_Main
;BESCNO EQU EMAX_20A_Tail
;BESCNO EQU EMAX_20A_Multi
;BESCNO EQU EMAX_40A_Main
;BESCNO EQU EMAX_40A_Tail
;BESCNO EQU EMAX_40A_Multi
;BESCNO EQU EMAX_Nano_20A_Main
;BESCNO EQU EMAX_Nano_20A_Tail
;BESCNO EQU EMAX_Nano_20A_Multi
;BESCNO EQU EMAX_Lightning_20A_Main
;BESCNO EQU EMAX_Lightning_20A_Tail
;BESCNO EQU EMAX_Lightning_20A_Multi
;BESCNO EQU XRotor_10A_Main
;BESCNO EQU XRotor_10A_Tail
;BESCNO EQU XRotor_10A_Multi
;BESCNO EQU XRotor_20A_Main
;BESCNO EQU XRotor_20A_Tail
;BESCNO EQU XRotor_20A_Multi
;BESCNO EQU XRotor_40A_Main
;BESCNO EQU XRotor_40A_Tail
;BESCNO EQU XRotor_40A_Multi
;BESCNO EQU MDRX62H_Main
;BESCNO EQU MDRX62H_Tail
;BESCNO EQU MDRX62H_Multi
;BESCNO EQU RotorGeeks_20A_Main
;BESCNO EQU RotorGeeks_20A_Tail
;BESCNO EQU RotorGeeks_20A_Multi
;BESCNO EQU RotorGeeks_20A_Plus_Main
;BESCNO EQU RotorGeeks_20A_Plus_Tail
;BESCNO EQU RotorGeeks_20A_Plus_Multi
;BESCNO EQU Flycolor_Fairy_6A_Main
;BESCNO EQU Flycolor_Fairy_6A_Tail
;BESCNO EQU Flycolor_Fairy_6A_Multi
;BESCNO EQU Flycolor_Fairy_30A_Main
;BESCNO EQU Flycolor_Fairy_30A_Tail
;BESCNO EQU Flycolor_Fairy_30A_Multi
;BESCNO EQU Flycolor_Fairy_V2_30A_Main
;BESCNO EQU Flycolor_Fairy_V2_30A_Tail
;BESCNO EQU Flycolor_Fairy_V2_30A_Multi
;BESCNO EQU Flycolor_Raptor_20A_Main
;BESCNO EQU Flycolor_Raptor_20A_Tail
;BESCNO EQU Flycolor_Raptor_20A_Multi
;BESCNO EQU Flycolor_Raptor_390_20A_Main
;BESCNO EQU Flycolor_Raptor_390_20A_Tail
;BESCNO EQU Flycolor_Raptor_390_20A_Multi
;BESCNO EQU FVT_Littlebee_12A_Main
;BESCNO EQU FVT_Littlebee_12A_Tail
;BESCNO EQU FVT_Littlebee_12A_Multi
;BESCNO EQU FVT_Littlebee_20A_Main
;BESCNO EQU FVT_Littlebee_20A_Tail
;BESCNO EQU FVT_Littlebee_20A_Multi
;BESCNO EQU FVT_Littlebee_20A_Pro_Main
;BESCNO EQU FVT_Littlebee_20A_Pro_Tail
;BESCNO EQU FVT_Littlebee_20A_Pro_Multi
;BESCNO EQU FVT_Littlebee_30A_Main
;BESCNO EQU FVT_Littlebee_30A_Tail
;BESCNO EQU FVT_Littlebee_30A_Multi
;BESCNO EQU Graupner_Ultra_20A_Main
;BESCNO EQU Graupner_Ultra_20A_Tail
;BESCNO EQU Graupner_Ultra_20A_Multi
;BESCNO EQU F85_3A_Main
;BESCNO EQU F85_3A_Tail
;BESCNO EQU F85_3A_Multi
;BESCNO EQU ZTW_Spider_Pro_20A_Main
;BESCNO EQU ZTW_Spider_Pro_20A_Tail
;BESCNO EQU ZTW_Spider_Pro_20A_Multi
;BESCNO EQU ZTW_Spider_Pro_20A_Premium_Main
;BESCNO EQU ZTW_Spider_Pro_20A_Premium_Tail
;BESCNO EQU ZTW_Spider_Pro_20A_Premium_Multi
;BESCNO EQU ZTW_Spider_Pro_20A_HV_Main
;BESCNO EQU ZTW_Spider_Pro_20A_HV_Tail
;BESCNO EQU ZTW_Spider_Pro_20A_HV_Multi
;BESCNO EQU ZTW_Spider_Pro_30A_HV_Main
;BESCNO EQU ZTW_Spider_Pro_30A_HV_Tail
;BESCNO EQU ZTW_Spider_Pro_30A_HV_Multi
;BESCNO EQU DYS_XM20A_Main
;BESCNO EQU DYS_XM20A_Tail
;BESCNO EQU DYS_XM20A_Multi
;BESCNO EQU Oversky_MR_20A_Main
;BESCNO EQU Oversky_MR_20A_Tail
;BESCNO EQU Oversky_MR_20A_Multi
;BESCNO EQU Oversky_MR_20A_Pro_Main
;BESCNO EQU Oversky_MR_20A_Pro_Tail
;BESCNO EQU Oversky_MR_20A_Pro_Multi
;BESCNO EQU TBS_Cube_12A_Main
;BESCNO EQU TBS_Cube_12A_Tail
;BESCNO EQU TBS_Cube_12A_Multi
;BESCNO EQU DALRC_XR20A_Main
;BESCNO EQU DALRC_XR20A_Tail
;BESCNO EQU DALRC_XR20A_Multi
;BESCNO EQU AIKON_Boltlite_30A_Main
;BESCNO EQU AIKON_Boltlite_30A_Tail
;BESCNO EQU AIKON_Boltlite_30A_Multi
;BESCNO EQU Align_MR25_15A_Main
;BESCNO EQU Align_MR25_15A_Tail
;BESCNO EQU Align_MR25_15A_Multi
;BESCNO EQU Servoking_Monster_30A_Main
;BESCNO EQU Servoking_Monster_30A_Tail
;BESCNO EQU Servoking_Monster_30A_Multi
;BESCNO EQU Servoking_Monster_30A_Pro_Main
;BESCNO EQU Servoking_Monster_30A_Pro_Tail
;BESCNO EQU Servoking_Monster_30A_Pro_Multi
;BESCNO EQU Servoking_Monster_70A_Pro_Main
;BESCNO EQU Servoking_Monster_70A_Pro_Tail
;BESCNO EQU Servoking_Monster_70A_Pro_Multi
;BESCNO EQU Servoking_Monster_80A_Main
;BESCNO EQU Servoking_Monster_80A_Tail
;BESCNO EQU Servoking_Monster_80A_Multi
;BESCNO EQU HTIRC_Hummingbird_12A_Main
;BESCNO EQU HTIRC_Hummingbird_12A_Tail
;BESCNO EQU HTIRC_Hummingbird_12A_Multi
;BESCNO EQU HTIRC_Hummingbird_20A_Main
;BESCNO EQU HTIRC_Hummingbird_20A_Tail
;BESCNO EQU HTIRC_Hummingbird_20A_Multi
;BESCNO EQU HTIRC_Hummingbird_30A_Pro_Main
;BESCNO EQU HTIRC_Hummingbird_30A_Pro_Tail
;BESCNO EQU HTIRC_Hummingbird_30A_Pro_Multi
;**** **** **** **** ****
; ESC selection statements
IF BESCNO == XP_3A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XP_3A.inc) ; Select XP 3A pinout
ENDIF
IF BESCNO == XP_3A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XP_3A.inc) ; Select XP 3A pinout
ENDIF
IF BESCNO == XP_3A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XP_3A.inc) ; Select XP 3A pinout
ENDIF
IF BESCNO == XP_7A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XP_7A.inc) ; Select XP 7A pinout
ENDIF
IF BESCNO == XP_7A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XP_7A.inc) ; Select XP 7A pinout
ENDIF
IF BESCNO == XP_7A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XP_7A.inc) ; Select XP 7A pinout
ENDIF
IF BESCNO == XP_7A_Fast_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XP_7A_Fast.inc) ; Select XP 7A Fast pinout
ENDIF
IF BESCNO == XP_7A_Fast_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XP_7A_Fast.inc) ; Select XP 7A Fast pinout
ENDIF
IF BESCNO == XP_7A_Fast_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XP_7A_Fast.inc) ; Select XP 7A Fast pinout
ENDIF
IF BESCNO == XP_12A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XP_12A.inc) ; Select XP 12A pinout
ENDIF
IF BESCNO == XP_12A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XP_12A.inc) ; Select XP 12A pinout
ENDIF
IF BESCNO == XP_12A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XP_12A.inc) ; Select XP 12A pinout
ENDIF
IF BESCNO == XP_18A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XP_18A.inc) ; Select XP 18A pinout
ENDIF
IF BESCNO == XP_18A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XP_18A.inc) ; Select XP 18A pinout
ENDIF
IF BESCNO == XP_18A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XP_18A.inc) ; Select XP 18A pinout
ENDIF
IF BESCNO == XP_25A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XP_25A.inc) ; Select XP 25A pinout
ENDIF
IF BESCNO == XP_25A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XP_25A.inc) ; Select XP 25A pinout
ENDIF
IF BESCNO == XP_25A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XP_25A.inc) ; Select XP 25A pinout
ENDIF
IF BESCNO == XP_35A_SW_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XP_35A_SW.inc) ; Select XP 35A SW pinout
ENDIF
IF BESCNO == XP_35A_SW_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XP_35A_SW.inc) ; Select XP 35A SW pinout
ENDIF
IF BESCNO == XP_35A_SW_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XP_35A_SW.inc) ; Select XP 35A SW pinout
ENDIF
IF BESCNO == DP_3A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (DP_3A.inc) ; Select DP 3A pinout
ENDIF
IF BESCNO == DP_3A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (DP_3A.inc) ; Select DP 3A pinout
ENDIF
IF BESCNO == DP_3A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (DP_3A.inc) ; Select DP 3A pinout
ENDIF
IF BESCNO == Supermicro_3p5A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Supermicro_3p5A.inc) ; Select Supermicro 3.5A pinout
ENDIF
IF BESCNO == Supermicro_3p5A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Supermicro_3p5A.inc) ; Select Supermicro 3.5A pinout
ENDIF
IF BESCNO == Supermicro_3p5A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Supermicro_3p5A.inc) ; Select Supermicro 3.5A pinout
ENDIF
IF BESCNO == Turnigy_Plush_6A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_6A.inc) ; Select Turnigy Plush 6A pinout
ENDIF
IF BESCNO == Turnigy_Plush_6A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_6A.inc) ; Select Turnigy Plush 6A pinout
ENDIF
IF BESCNO == Turnigy_Plush_6A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_6A.inc) ; Select Turnigy Plush 6A pinout
ENDIF
IF BESCNO == Turnigy_Plush_10A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_10A.inc) ; Select Turnigy Plush 10A pinout
ENDIF
IF BESCNO == Turnigy_Plush_10A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_10A.inc) ; Select Turnigy Plush 10A pinout
ENDIF
IF BESCNO == Turnigy_Plush_10A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_10A.inc) ; Select Turnigy Plush 10A pinout
ENDIF
IF BESCNO == Turnigy_Plush_12A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_12A.inc) ; Select Turnigy Plush 12A pinout
ENDIF
IF BESCNO == Turnigy_Plush_12A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_12A.inc) ; Select Turnigy Plush 12A pinout
ENDIF
IF BESCNO == Turnigy_Plush_12A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_12A.inc) ; Select Turnigy Plush 12A pinout
ENDIF
IF BESCNO == Turnigy_Plush_18A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_18A.inc) ; Select Turnigy Plush 18A pinout
ENDIF
IF BESCNO == Turnigy_Plush_18A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_18A.inc) ; Select Turnigy Plush 18A pinout
ENDIF
IF BESCNO == Turnigy_Plush_18A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_18A.inc) ; Select Turnigy Plush 18A pinout
ENDIF
IF BESCNO == Turnigy_Plush_25A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_25A.inc) ; Select Turnigy Plush 25A pinout
ENDIF
IF BESCNO == Turnigy_Plush_25A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_25A.inc) ; Select Turnigy Plush 25A pinout
ENDIF
IF BESCNO == Turnigy_Plush_25A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_25A.inc) ; Select Turnigy Plush 25A pinout
ENDIF
IF BESCNO == Turnigy_Plush_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_30A.inc) ; Select Turnigy Plush 30A pinout
ENDIF
IF BESCNO == Turnigy_Plush_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_30A.inc) ; Select Turnigy Plush 30A pinout
ENDIF
IF BESCNO == Turnigy_Plush_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_30A.inc) ; Select Turnigy Plush 30A pinout
ENDIF
IF BESCNO == Turnigy_Plush_40A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_40A.inc) ; Select Turnigy Plush 40A pinout
ENDIF
IF BESCNO == Turnigy_Plush_40A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_40A.inc) ; Select Turnigy Plush 40A pinout
ENDIF
IF BESCNO == Turnigy_Plush_40A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_40A.inc) ; Select Turnigy Plush 40A pinout
ENDIF
IF BESCNO == Turnigy_Plush_60A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_60A.inc) ; Select Turnigy Plush 60A pinout
ENDIF
IF BESCNO == Turnigy_Plush_60A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_60A.inc) ; Select Turnigy Plush 60A pinout
ENDIF
IF BESCNO == Turnigy_Plush_60A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_60A.inc) ; Select Turnigy Plush 60A pinout
ENDIF
IF BESCNO == Turnigy_Plush_80A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_80A.inc) ; Select Turnigy Plush 80A pinout
ENDIF
IF BESCNO == Turnigy_Plush_80A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_80A.inc) ; Select Turnigy Plush 80A pinout
ENDIF
IF BESCNO == Turnigy_Plush_80A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_80A.inc) ; Select Turnigy Plush 80A pinout
ENDIF
IF BESCNO == Turnigy_Plush_Nfet_18A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_Nfet_18A.inc) ; Select Turnigy Plush Nfet 18A pinout
ENDIF
IF BESCNO == Turnigy_Plush_Nfet_18A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_Nfet_18A.inc) ; Select Turnigy Plush Nfet 18A pinout
ENDIF
IF BESCNO == Turnigy_Plush_Nfet_18A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_Nfet_18A.inc) ; Select Turnigy Plush Nfet 18A pinout
ENDIF
IF BESCNO == Turnigy_Plush_Nfet_25A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_Nfet_25A.inc) ; Select Turnigy Plush Nfet 25A pinout
ENDIF
IF BESCNO == Turnigy_Plush_Nfet_25A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_Nfet_25A.inc) ; Select Turnigy Plush Nfet 25A pinout
ENDIF
IF BESCNO == Turnigy_Plush_Nfet_25A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_Nfet_25A.inc) ; Select Turnigy Plush Nfet 25A pinout
ENDIF
IF BESCNO == Turnigy_Plush_Nfet_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_Plush_Nfet_30A.inc) ; Select Turnigy Plush Nfet 30A pinout
ENDIF
IF BESCNO == Turnigy_Plush_Nfet_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_Plush_Nfet_30A.inc) ; Select Turnigy Plush Nfet 30A pinout
ENDIF
IF BESCNO == Turnigy_Plush_Nfet_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_Plush_Nfet_30A.inc) ; Select Turnigy Plush Nfet 30A pinout
ENDIF
IF BESCNO == Turnigy_AE_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_AE_20A.inc) ; Select Turnigy AE-20A pinout
ENDIF
IF BESCNO == Turnigy_AE_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_AE_20A.inc) ; Select Turnigy AE-20A pinout
ENDIF
IF BESCNO == Turnigy_AE_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_AE_20A.inc) ; Select Turnigy AE-20A pinout
ENDIF
IF BESCNO == Turnigy_AE_25A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_AE_25A.inc) ; Select Turnigy AE-25A pinout
ENDIF
IF BESCNO == Turnigy_AE_25A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_AE_25A.inc) ; Select Turnigy AE-25A pinout
ENDIF
IF BESCNO == Turnigy_AE_25A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_AE_25A.inc) ; Select Turnigy AE-25A pinout
ENDIF
IF BESCNO == Turnigy_AE_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_AE_30A.inc) ; Select Turnigy AE-30A pinout
ENDIF
IF BESCNO == Turnigy_AE_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_AE_30A.inc) ; Select Turnigy AE-30A pinout
ENDIF
IF BESCNO == Turnigy_AE_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_AE_30A.inc) ; Select Turnigy AE-30A pinout
ENDIF
IF BESCNO == Turnigy_AE_45A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_AE_45A.inc) ; Select Turnigy AE-45A pinout
ENDIF
IF BESCNO == Turnigy_AE_45A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_AE_45A.inc) ; Select Turnigy AE-45A pinout
ENDIF
IF BESCNO == Turnigy_AE_45A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_AE_45A.inc) ; Select Turnigy AE-45A pinout
ENDIF
IF BESCNO == Turnigy_KForce_40A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_KForce_40A.inc) ; Select Turnigy KForce 40A pinout
ENDIF
IF BESCNO == Turnigy_KForce_40A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_KForce_40A.inc) ; Select Turnigy KForce 40A pinout
ENDIF
IF BESCNO == Turnigy_KForce_40A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_KForce_40A.inc) ; Select Turnigy KForce 40A pinout
ENDIF
IF BESCNO == Turnigy_KForce_70A_HV_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_KForce_70A_HV.inc) ; Select Turnigy KForce 70A HV pinout
ENDIF
IF BESCNO == Turnigy_KForce_70A_HV_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_KForce_70A_HV.inc) ; Select Turnigy KForce 70A HV pinout
ENDIF
IF BESCNO == Turnigy_KForce_70A_HV_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_KForce_70A_HV.inc) ; Select Turnigy KForce 70A HV pinout
ENDIF
IF BESCNO == Turnigy_KForce_120A_HV_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_KForce_120A_HV.inc) ; Select Turnigy KForce 120A HV pinout
ENDIF
IF BESCNO == Turnigy_KForce_120A_HV_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_KForce_120A_HV.inc) ; Select Turnigy KForce 120A HV pinout
ENDIF
IF BESCNO == Turnigy_KForce_120A_HV_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_KForce_120A_HV.inc) ; Select Turnigy KForce 120A HV pinout
ENDIF
IF BESCNO == Turnigy_KForce_120A_HV_v2_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Turnigy_KForce_120A_HV_v2.inc); Select Turnigy KForce 120A HV v2 pinout
ENDIF
IF BESCNO == Turnigy_KForce_120A_HV_v2_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Turnigy_KForce_120A_HV_v2.inc); Select Turnigy KForce 120A HV v2 pinout
ENDIF
IF BESCNO == Turnigy_KForce_120A_HV_v2_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Turnigy_KForce_120A_HV_v2.inc); Select Turnigy KForce 120A HV v2 pinout
ENDIF
IF BESCNO == Skywalker_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Skywalker_20A.inc) ; Select Skywalker 20A pinout
ENDIF
IF BESCNO == Skywalker_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Skywalker_20A.inc) ; Select Skywalker 20A pinout
ENDIF
IF BESCNO == Skywalker_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Skywalker_20A.inc) ; Select Skywalker 20A pinout
ENDIF
IF BESCNO == Skywalker_40A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Skywalker_40A.inc) ; Select Skywalker 40A pinout
ENDIF
IF BESCNO == Skywalker_40A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Skywalker_40A.inc) ; Select Skywalker 40A pinout
ENDIF
IF BESCNO == Skywalker_40A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Skywalker_40A.inc) ; Select Skywalker 40A pinout
ENDIF
IF BESCNO == HiModel_Cool_22A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (HiModel_Cool_22A.inc) ; Select HiModel Cool 22A pinout
ENDIF
IF BESCNO == HiModel_Cool_22A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (HiModel_Cool_22A.inc) ; Select HiModel Cool 22A pinout
ENDIF
IF BESCNO == HiModel_Cool_22A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (HiModel_Cool_22A.inc) ; Select HiModel Cool 22A pinout
ENDIF
IF BESCNO == HiModel_Cool_33A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (HiModel_Cool_33A.inc) ; Select HiModel Cool 33A pinout
ENDIF
IF BESCNO == HiModel_Cool_33A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (HiModel_Cool_33A.inc) ; Select HiModel Cool 33A pinout
ENDIF
IF BESCNO == HiModel_Cool_33A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (HiModel_Cool_33A.inc) ; Select HiModel Cool 33A pinout
ENDIF
IF BESCNO == HiModel_Cool_41A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (HiModel_Cool_41A.inc) ; Select HiModel Cool 41A pinout
ENDIF
IF BESCNO == HiModel_Cool_41A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (HiModel_Cool_41A.inc) ; Select HiModel Cool 41A pinout
ENDIF
IF BESCNO == HiModel_Cool_41A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (HiModel_Cool_41A.inc) ; Select HiModel Cool 41A pinout
ENDIF
IF BESCNO == RCTimer_6A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (RCTimer_6A.inc) ; Select RC Timer 6A pinout
ENDIF
IF BESCNO == RCTimer_6A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (RCTimer_6A.inc) ; Select RC Timer 6A pinout
ENDIF
IF BESCNO == RCTimer_6A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (RCTimer_6A.inc) ; Select RC Timer 6A pinout
ENDIF
IF BESCNO == Align_RCE_BL15X_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Align_RCE_BL15X.inc) ; Select Align RCE-BL15X pinout
ENDIF
IF BESCNO == Align_RCE_BL15X_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Align_RCE_BL15X.inc) ; Select Align RCE-BL15X pinout
ENDIF
IF BESCNO == Align_RCE_BL15X_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Align_RCE_BL15X.inc) ; Select Align RCE-BL15X pinout
ENDIF
IF BESCNO == Align_RCE_BL15P_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Align_RCE_BL15P.inc) ; Select Align RCE-BL15P pinout
ENDIF
IF BESCNO == Align_RCE_BL15P_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Align_RCE_BL15P.inc) ; Select Align RCE-BL15P pinout
ENDIF
IF BESCNO == Align_RCE_BL15P_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Align_RCE_BL15P.inc) ; Select Align RCE-BL15P pinout
ENDIF
IF BESCNO == Align_RCE_BL35X_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Align_RCE_BL35X.inc) ; Select Align RCE-BL35X pinout
ENDIF
IF BESCNO == Align_RCE_BL35X_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Align_RCE_BL35X.inc) ; Select Align RCE-BL35X pinout
ENDIF
IF BESCNO == Align_RCE_BL35X_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Align_RCE_BL35X.inc) ; Select Align RCE-BL35X pinout
ENDIF
IF BESCNO == Align_RCE_BL35P_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Align_RCE_BL35P.inc) ; Select Align RCE-BL35P pinout
ENDIF
IF BESCNO == Align_RCE_BL35P_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Align_RCE_BL35P.inc) ; Select Align RCE-BL35P pinout
ENDIF
IF BESCNO == Align_RCE_BL35P_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Align_RCE_BL35P.inc) ; Select Align RCE-BL35P pinout
ENDIF
IF BESCNO == Gaui_GE_183_18A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Gaui_GE_183_18A.inc) ; Select Gaui GE-183 18A pinout
ENDIF
IF BESCNO == Gaui_GE_183_18A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Gaui_GE_183_18A.inc) ; Select Gaui GE-183 18A pinout
ENDIF
IF BESCNO == Gaui_GE_183_18A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Gaui_GE_183_18A.inc) ; Select Gaui GE-183 18A pinout
ENDIF
IF BESCNO == H_King_10A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (H_King_10A.inc) ; Select H-King 10A pinout
ENDIF
IF BESCNO == H_King_10A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (H_King_10A.inc) ; Select H-King 10A pinout
ENDIF
IF BESCNO == H_King_10A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (H_King_10A.inc) ; Select H-King 10A pinout
ENDIF
IF BESCNO == H_King_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (H_King_20A.inc) ; Select H-King 20A pinout
ENDIF
IF BESCNO == H_King_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (H_King_20A.inc) ; Select H-King 20A pinout
ENDIF
IF BESCNO == H_King_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (H_King_20A.inc) ; Select H-King 20A pinout
ENDIF
IF BESCNO == H_King_35A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (H_King_35A.inc) ; Select H-King 35A pinout
ENDIF
IF BESCNO == H_King_35A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (H_King_35A.inc) ; Select H-King 35A pinout
ENDIF
IF BESCNO == H_King_35A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (H_King_35A.inc) ; Select H-King 35A pinout
ENDIF
IF BESCNO == H_King_50A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (H_King_50A.inc) ; Select H-King 50A pinout
ENDIF
IF BESCNO == H_King_50A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (H_King_50A.inc) ; Select H-King 50A pinout
ENDIF
IF BESCNO == H_King_50A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (H_King_50A.inc) ; Select H-King 50A pinout
ENDIF
IF BESCNO == Polaris_Thunder_12A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Polaris_Thunder_12A.inc) ; Select Polaris Thunder 12A pinout
ENDIF
IF BESCNO == Polaris_Thunder_12A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Polaris_Thunder_12A.inc) ; Select Polaris Thunder 12A pinout
ENDIF
IF BESCNO == Polaris_Thunder_12A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Polaris_Thunder_12A.inc) ; Select Polaris Thunder 12A pinout
ENDIF
IF BESCNO == Polaris_Thunder_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Polaris_Thunder_20A.inc) ; Select Polaris Thunder 20A pinout
ENDIF
IF BESCNO == Polaris_Thunder_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Polaris_Thunder_20A.inc) ; Select Polaris Thunder 20A pinout
ENDIF
IF BESCNO == Polaris_Thunder_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Polaris_Thunder_20A.inc) ; Select Polaris Thunder 20A pinout
ENDIF
IF BESCNO == Polaris_Thunder_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Polaris_Thunder_30A.inc) ; Select Polaris Thunder 30A pinout
ENDIF
IF BESCNO == Polaris_Thunder_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Polaris_Thunder_30A.inc) ; Select Polaris Thunder 30A pinout
ENDIF
IF BESCNO == Polaris_Thunder_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Polaris_Thunder_30A.inc) ; Select Polaris Thunder 30A pinout
ENDIF
IF BESCNO == Polaris_Thunder_40A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Polaris_Thunder_40A.inc) ; Select Polaris Thunder 40A pinout
ENDIF
IF BESCNO == Polaris_Thunder_40A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Polaris_Thunder_40A.inc) ; Select Polaris Thunder 40A pinout
ENDIF
IF BESCNO == Polaris_Thunder_40A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Polaris_Thunder_40A.inc) ; Select Polaris Thunder 40A pinout
ENDIF
IF BESCNO == Polaris_Thunder_60A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Polaris_Thunder_60A.inc) ; Select Polaris Thunder 60A pinout
ENDIF
IF BESCNO == Polaris_Thunder_60A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Polaris_Thunder_60A.inc) ; Select Polaris Thunder 60A pinout
ENDIF
IF BESCNO == Polaris_Thunder_60A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Polaris_Thunder_60A.inc) ; Select Polaris Thunder 60A pinout
ENDIF
IF BESCNO == Polaris_Thunder_80A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Polaris_Thunder_80A.inc) ; Select Polaris Thunder 80A pinout
ENDIF
IF BESCNO == Polaris_Thunder_80A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Polaris_Thunder_80A.inc) ; Select Polaris Thunder 80A pinout
ENDIF
IF BESCNO == Polaris_Thunder_80A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Polaris_Thunder_80A.inc) ; Select Polaris Thunder 80A pinout
ENDIF
IF BESCNO == Polaris_Thunder_100A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Polaris_Thunder_100A.inc); Select Polaris Thunder 100A pinout
ENDIF
IF BESCNO == Polaris_Thunder_100A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Polaris_Thunder_100A.inc); Select Polaris Thunder 100A pinout
ENDIF
IF BESCNO == Polaris_Thunder_100A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Polaris_Thunder_100A.inc); Select Polaris Thunder 100A pinout
ENDIF
IF BESCNO == Platinum_Pro_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Platinum_Pro_30A.inc) ; Select Platinum Pro 30A pinout
ENDIF
IF BESCNO == Platinum_Pro_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Platinum_Pro_30A.inc) ; Select Platinum Pro 30A pinout
ENDIF
IF BESCNO == Platinum_Pro_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Platinum_Pro_30A.inc) ; Select Platinum Pro 30A pinout
ENDIF
IF BESCNO == Platinum_Pro_150A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Platinum_Pro_150A.inc) ; Select Platinum Pro 150A pinout
ENDIF
IF BESCNO == Platinum_Pro_150A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Platinum_Pro_150A.inc) ; Select Platinum Pro 150A pinout
ENDIF
IF BESCNO == Platinum_Pro_150A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Platinum_Pro_150A.inc) ; Select Platinum Pro 150A pinout
ENDIF
IF BESCNO == Platinum_50Av3_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Platinum_50Av3.inc) ; Select Platinum 50A v3 pinout
ENDIF
IF BESCNO == Platinum_50Av3_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Platinum_50Av3.inc) ; Select Platinum 50A v3 pinout
ENDIF
IF BESCNO == Platinum_50Av3_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Platinum_50Av3.inc) ; Select Platinum 50A v3 pinout
ENDIF
IF BESCNO == EAZY_3Av2_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (EAZY_3Av2.inc) ; Select Eazy 3A v2 pinout
ENDIF
IF BESCNO == EAZY_3Av2_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (EAZY_3Av2.inc) ; Select Eazy 3A v2 pinout
ENDIF
IF BESCNO == EAZY_3Av2_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (EAZY_3Av2.inc) ; Select Eazy 3A v2 pinout
ENDIF
IF BESCNO == Tarot_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Tarot_30A.inc) ; Select Tarot 30A pinout
ENDIF
IF BESCNO == Tarot_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Tarot_30A.inc) ; Select Tarot 30A pinout
ENDIF
IF BESCNO == Tarot_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Tarot_30A.inc) ; Select Tarot 30A pinout
ENDIF
IF BESCNO == SkyIII_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (SkyIII_30A.inc) ; Select SkyIII 30A pinout
ENDIF
IF BESCNO == SkyIII_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (SkyIII_30A.inc) ; Select SkyIII 30A pinout
ENDIF
IF BESCNO == SkyIII_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (SkyIII_30A.inc) ; Select SkyIII 30A pinout
ENDIF
IF BESCNO == EMAX_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (EMAX_20A.inc) ; Select EMAX 20A pinout
ENDIF
IF BESCNO == EMAX_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (EMAX_20A.inc) ; Select EMAX 20A pinout
ENDIF
IF BESCNO == EMAX_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (EMAX_20A.inc) ; Select EMAX 20A pinout
ENDIF
IF BESCNO == EMAX_40A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (EMAX_40A.inc) ; Select EMAX 40A pinout
ENDIF
IF BESCNO == EMAX_40A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (EMAX_40A.inc) ; Select EMAX 40A pinout
ENDIF
IF BESCNO == EMAX_40A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (EMAX_40A.inc) ; Select EMAX 40A pinout
ENDIF
IF BESCNO == EMAX_Nano_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (EMAX_Nano_20A.inc) ; Select EMAX Nano 20A pinout
ENDIF
IF BESCNO == EMAX_Nano_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (EMAX_Nano_20A.inc) ; Select EMAX Nano 20A pinout
ENDIF
IF BESCNO == EMAX_Nano_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (EMAX_Nano_20A.inc) ; Select EMAX Nano 20A pinout
ENDIF
IF BESCNO == EMAX_Lightning_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (EMAX_Lightning_20A.inc) ; Select EMAX Lightning 20A pinout
ENDIF
IF BESCNO == EMAX_Lightning_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (EMAX_Lightning_20A.inc) ; Select EMAX Lightning 20A pinout
ENDIF
IF BESCNO == EMAX_Lightning_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (EMAX_Lightning_20A.inc) ; Select EMAX Lightning 20A pinout
ENDIF
IF BESCNO == XRotor_10A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XRotor_10A.inc) ; Select XRotor 10A pinout
ENDIF
IF BESCNO == XRotor_10A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XRotor_10A.inc) ; Select XRotor 10A pinout
ENDIF
IF BESCNO == XRotor_10A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XRotor_10A.inc) ; Select XRotor 10A pinout
ENDIF
IF BESCNO == XRotor_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XRotor_20A.inc) ; Select XRotor 20A pinout
ENDIF
IF BESCNO == XRotor_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XRotor_20A.inc) ; Select XRotor 20A pinout
ENDIF
IF BESCNO == XRotor_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XRotor_20A.inc) ; Select XRotor 20A pinout
ENDIF
IF BESCNO == XRotor_40A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (XRotor_40A.inc) ; Select XRotor 40A pinout
ENDIF
IF BESCNO == XRotor_40A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (XRotor_40A.inc) ; Select XRotor 40A pinout
ENDIF
IF BESCNO == XRotor_40A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (XRotor_40A.inc) ; Select XRotor 40A pinout
ENDIF
IF BESCNO == MDRX62H_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (MDRX62H.inc) ; Select MDRX62H pinout
ENDIF
IF BESCNO == MDRX62H_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (MDRX62H.inc) ; Select MDRX62H pinout
ENDIF
IF BESCNO == MDRX62H_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (MDRX62H.inc) ; Select MDRX62H pinout
ENDIF
IF BESCNO == RotorGeeks_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (RotorGeeks_20A.inc) ; Select RotorGeeks 20A pinout
ENDIF
IF BESCNO == RotorGeeks_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (RotorGeeks_20A.inc) ; Select RotorGeeks 20A pinout
ENDIF
IF BESCNO == RotorGeeks_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (RotorGeeks_20A.inc) ; Select RotorGeeks 20A pinout
ENDIF
IF BESCNO == RotorGeeks_20A_Plus_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (RotorGeeks_20A_Plus.inc) ; Select RotorGeeks 20A Plus pinout
ENDIF
IF BESCNO == RotorGeeks_20A_Plus_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (RotorGeeks_20A_Plus.inc) ; Select RotorGeeks 20A Plus pinout
ENDIF
IF BESCNO == RotorGeeks_20A_Plus_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (RotorGeeks_20A_Plus.inc) ; Select RotorGeeks 20A Plus pinout
ENDIF
IF BESCNO == Flycolor_Fairy_6A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Flycolor_Fairy_6A.inc) ; Select Flycolor Fairy 6A pinout
ENDIF
IF BESCNO == Flycolor_Fairy_6A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Flycolor_Fairy_6A.inc) ; Select Flycolor Fairy 6A pinout
ENDIF
IF BESCNO == Flycolor_Fairy_6A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Flycolor_Fairy_6A.inc) ; Select Flycolor Fairy 6A pinout
ENDIF
IF BESCNO == Flycolor_Fairy_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Flycolor_Fairy_30A.inc) ; Select Flycolor Fairy 30A pinout
ENDIF
IF BESCNO == Flycolor_Fairy_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Flycolor_Fairy_30A.inc) ; Select Flycolor Fairy 30A pinout
ENDIF
IF BESCNO == Flycolor_Fairy_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Flycolor_Fairy_30A.inc) ; Select Flycolor Fairy 30A pinout
ENDIF
IF BESCNO == Flycolor_Fairy_V2_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Flycolor_Fairy_V2_30A.inc) ; Select Flycolor Fairy V2 30A pinout
ENDIF
IF BESCNO == Flycolor_Fairy_V2_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Flycolor_Fairy_V2_30A.inc) ; Select Flycolor Fairy V2 30A pinout
ENDIF
IF BESCNO == Flycolor_Fairy_V2_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Flycolor_Fairy_V2_30A.inc) ; Select Flycolor Fairy V2 30A pinout
ENDIF
IF BESCNO == Flycolor_Raptor_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Flycolor_Raptor_20A.inc) ; Select Flycolor Raptor 20A pinout
ENDIF
IF BESCNO == Flycolor_Raptor_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Flycolor_Raptor_20A.inc) ; Select Flycolor Raptor 20A pinout
ENDIF
IF BESCNO == Flycolor_Raptor_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Flycolor_Raptor_20A.inc) ; Select Flycolor Raptor 20A pinout
ENDIF
IF BESCNO == Flycolor_Raptor_390_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Flycolor_Raptor_390_20A.inc) ; Select Flycolor Raptor 390 20A pinout
ENDIF
IF BESCNO == Flycolor_Raptor_390_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Flycolor_Raptor_390_20A.inc) ; Select Flycolor Raptor 390 20A pinout
ENDIF
IF BESCNO == Flycolor_Raptor_390_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Flycolor_Raptor_390_20A.inc) ; Select Flycolor Raptor 390 20A pinout
ENDIF
IF BESCNO == FVT_Littlebee_12A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (FVT_Littlebee_12A.inc) ; Select Favourite Littlebee 12A pinout
ENDIF
IF BESCNO == FVT_Littlebee_12A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (FVT_Littlebee_12A.inc) ; Select Favourite Littlebee 12A pinout
ENDIF
IF BESCNO == FVT_Littlebee_12A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (FVT_Littlebee_12A.inc) ; Select Favourite Littlebee 12A pinout
ENDIF
IF BESCNO == FVT_Littlebee_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (FVT_Littlebee_20A.inc) ; Select Favourite Littlebee 20A pinout
ENDIF
IF BESCNO == FVT_Littlebee_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (FVT_Littlebee_20A.inc) ; Select Favourite Littlebee 20A pinout
ENDIF
IF BESCNO == FVT_Littlebee_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (FVT_Littlebee_20A.inc) ; Select Favourite Littlebee 20A pinout
ENDIF
IF BESCNO == FVT_Littlebee_20A_Pro_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (FVT_Littlebee_20A_Pro.inc) ; Select Favourite Littlebee 20A Pro pinout
ENDIF
IF BESCNO == FVT_Littlebee_20A_Pro_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (FVT_Littlebee_20A_Pro.inc) ; Select Favourite Littlebee 20A Pro pinout
ENDIF
IF BESCNO == FVT_Littlebee_20A_Pro_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (FVT_Littlebee_20A_Pro.inc) ; Select Favourite Littlebee 20A Pro pinout
ENDIF
IF BESCNO == FVT_Littlebee_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (FVT_Littlebee_30A.inc) ; Select Favourite Littlebee 30A pinout
ENDIF
IF BESCNO == FVT_Littlebee_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (FVT_Littlebee_30A.inc) ; Select Favourite Littlebee 30A pinout
ENDIF
IF BESCNO == FVT_Littlebee_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (FVT_Littlebee_30A.inc) ; Select Favourite Littlebee 30A pinout
ENDIF
IF BESCNO == Graupner_Ultra_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Graupner_Ultra_20A.inc) ; Select Graupner Ultra 20A pinout
ENDIF
IF BESCNO == Graupner_Ultra_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Graupner_Ultra_20A.inc) ; Select Graupner Ultra 20A pinout
ENDIF
IF BESCNO == Graupner_Ultra_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Graupner_Ultra_20A.inc) ; Select Graupner Ultra 20A pinout
ENDIF
IF BESCNO == F85_3A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (F85_3A.inc) ; Select F85 3A pinout
ENDIF
IF BESCNO == F85_3A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (F85_3A.inc) ; Select F85 3A pinout
ENDIF
IF BESCNO == F85_3A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (F85_3A.inc) ; Select F85 3A pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (ZTW_Spider_Pro_20A.inc) ; Select ZTW Spider Pro 20A pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (ZTW_Spider_Pro_20A.inc) ; Select ZTW Spider Pro 20A pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (ZTW_Spider_Pro_20A.inc) ; Select ZTW Spider Pro 20A pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_20A_Premium_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (ZTW_Spider_Pro_20A_Premium.inc) ; Select ZTW Spider Pro 20A Premium pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_20A_Premium_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (ZTW_Spider_Pro_20A_Premium.inc) ; Select ZTW Spider Pro 20A Premium pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_20A_Premium_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (ZTW_Spider_Pro_20A_Premium.inc) ; Select ZTW Spider Pro 20A Premium pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_20A_HV_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (ZTW_Spider_Pro_20A_HV.inc) ; Select ZTW Spider Pro 20A HV pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_20A_HV_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (ZTW_Spider_Pro_20A_HV.inc) ; Select ZTW Spider Pro 20A HV pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_20A_HV_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (ZTW_Spider_Pro_20A_HV.inc) ; Select ZTW Spider Pro 20A HV pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_30A_HV_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (ZTW_Spider_Pro_30A_HV.inc) ; Select ZTW Spider Pro 30A HV pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_30A_HV_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (ZTW_Spider_Pro_30A_HV.inc) ; Select ZTW Spider Pro 30A HV pinout
ENDIF
IF BESCNO == ZTW_Spider_Pro_30A_HV_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (ZTW_Spider_Pro_30A_HV.inc) ; Select ZTW Spider Pro 30A HV pinout
ENDIF
IF BESCNO == DYS_XM20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (DYS_XM20A.inc) ; Select DYS XM20A pinout
ENDIF
IF BESCNO == DYS_XM20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (DYS_XM20A.inc) ; Select DYS XM20A pinout
ENDIF
IF BESCNO == DYS_XM20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (DYS_XM20A.inc) ; Select DYS XM20A pinout
ENDIF
IF BESCNO == Oversky_MR_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Oversky_MR_20A.inc) ; Select Oversky MR-20A pinout
ENDIF
IF BESCNO == Oversky_MR_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Oversky_MR_20A.inc) ; Select Oversky MR-20A pinout
ENDIF
IF BESCNO == Oversky_MR_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Oversky_MR_20A.inc) ; Select Oversky MR-20A pinout
ENDIF
IF BESCNO == Oversky_MR_20A_Pro_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Oversky_MR_20A_Pro.inc) ; Select Oversky MR-20A Pro pinout
ENDIF
IF BESCNO == Oversky_MR_20A_Pro_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Oversky_MR_20A_Pro.inc) ; Select Oversky MR-20A Pro pinout
ENDIF
IF BESCNO == Oversky_MR_20A_Pro_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Oversky_MR_20A_Pro.inc) ; Select Oversky MR-20A Pro pinout
ENDIF
IF BESCNO == TBS_Cube_12A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (TBS_Cube_12A.inc) ; Select TBS Cube 12A pinout
ENDIF
IF BESCNO == TBS_Cube_12A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (TBS_Cube_12A.inc) ; Select TBS Cube 12A pinout
ENDIF
IF BESCNO == TBS_Cube_12A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (TBS_Cube_12A.inc) ; Select TBS Cube 12A pinout
ENDIF
IF BESCNO == DALRC_XR20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (DALRC_XR20A.inc) ; Select DALRC 20A pinout
ENDIF
IF BESCNO == DALRC_XR20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (DALRC_XR20A.inc) ; Select DALRC 20A pinout
ENDIF
IF BESCNO == DALRC_XR20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (DALRC_XR20A.inc) ; Select DALRC 20A pinout
ENDIF
IF BESCNO == AIKON_Boltlite_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (AIKON_Boltlite_30A.inc) ; Select AIKON_Boltlite 30A pinout
ENDIF
IF BESCNO == AIKON_Boltlite_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (AIKON_Boltlite_30A.inc) ; Select AIKON_Boltlite 30A pinout
ENDIF
IF BESCNO == AIKON_Boltlite_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (AIKON_Boltlite_30A.inc) ; Select AIKON_Boltlite 30A pinout
ENDIF
IF BESCNO == Align_MR25_15A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Align_MR25_15A.inc) ; Select Align MR25 15A pinout
ENDIF
IF BESCNO == Align_MR25_15A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Align_MR25_15A.inc) ; Select Align MR25 15A pinout
ENDIF
IF BESCNO == Align_MR25_15A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Align_MR25_15A.inc) ; Select Align MR25 15A pinout
ENDIF
IF BESCNO == Servoking_Monster_30A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Servoking_Monster_30A.inc) ; Select Servoking Monster 30A pinout
ENDIF
IF BESCNO == Servoking_Monster_30A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Servoking_Monster_30A.inc) ; Select Servoking Monster 30A pinout
ENDIF
IF BESCNO == Servoking_Monster_30A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Servoking_Monster_30A.inc) ; Select Servoking Monster 30A pinout
ENDIF
IF BESCNO == Servoking_Monster_30A_Pro_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Servoking_Monster_30A_Pro.inc) ; Select Servoking Monster 30A Pro pinout
ENDIF
IF BESCNO == Servoking_Monster_30A_Pro_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Servoking_Monster_30A_Pro.inc) ; Select Servoking Monster 30A Pro pinout
ENDIF
IF BESCNO == Servoking_Monster_30A_Pro_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Servoking_Monster_30A_Pro.inc) ; Select Servoking Monster 30A Pro pinout
ENDIF
IF BESCNO == Servoking_Monster_70A_Pro_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Servoking_Monster_70A_Pro.inc) ; Select Servoking Monster 70A Pro pinout
ENDIF
IF BESCNO == Servoking_Monster_70A_Pro_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Servoking_Monster_70A_Pro.inc) ; Select Servoking Monster 70A Pro pinout
ENDIF
IF BESCNO == Servoking_Monster_70A_Pro_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Servoking_Monster_70A_Pro.inc) ; Select Servoking Monster 70A Pro pinout
ENDIF
IF BESCNO == Servoking_Monster_80A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (Servoking_Monster_80A.inc) ; Select Servoking Monster 80A pinout
ENDIF
IF BESCNO == Servoking_Monster_80A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (Servoking_Monster_80A.inc) ; Select Servoking Monster 80A pinout
ENDIF
IF BESCNO == Servoking_Monster_80A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (Servoking_Monster_80A.inc) ; Select Servoking Monster 80A pinout
ENDIF
IF BESCNO == HTIRC_Hummingbird_12A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (HTIRC_Hummingbird_12A.inc) ; Select HTIRC Hummingbird 12A pinout
ENDIF
IF BESCNO == HTIRC_Hummingbird_12A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (HTIRC_Hummingbird_12A.inc) ; Select HTIRC Hummingbird 12A pinout
ENDIF
IF BESCNO == HTIRC_Hummingbird_12A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (HTIRC_Hummingbird_12A.inc) ; Select HTIRC Hummingbird 12A pinout
ENDIF
IF BESCNO == HTIRC_Hummingbird_20A_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (HTIRC_Hummingbird_20A.inc) ; Select HTIRC Hummingbird 20A pinout
ENDIF
IF BESCNO == HTIRC_Hummingbird_20A_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (HTIRC_Hummingbird_20A.inc) ; Select HTIRC Hummingbird 20A pinout
ENDIF
IF BESCNO == HTIRC_Hummingbird_20A_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (HTIRC_Hummingbird_20A.inc) ; Select HTIRC Hummingbird 20A pinout
ENDIF
IF BESCNO == HTIRC_Hummingbird_30A_Pro_Main
MODE EQU 0 ; Choose mode. Set to 0 for main motor
$include (HTIRC_Hummingbird_30A_Pro.inc) ; Select HTIRC Hummingbird 30A Pro pinout
ENDIF
IF BESCNO == HTIRC_Hummingbird_30A_Pro_Tail
MODE EQU 1 ; Choose mode. Set to 1 for tail motor
$include (HTIRC_Hummingbird_30A_Pro.inc) ; Select HTIRC Hummingbird 30A Pro pinout
ENDIF
IF BESCNO == HTIRC_Hummingbird_30A_Pro_Multi
MODE EQU 2 ; Choose mode. Set to 2 for multirotor
$include (HTIRC_Hummingbird_30A_Pro.inc) ; Select HTIRC Hummingbird 30A Pro pinout
ENDIF
;**** **** **** **** ****
; TX programming defaults
;
; Parameter dependencies:
; - Governor P gain, I gain and Range is only used if one of the three governor modes is selected
; - Governor setup target is only used if Setup governor mode is selected (or closed loop mode is on for multi)
;
; MAIN
DEFAULT_PGM_MAIN_P_GAIN EQU 7 ; 1=0.13 2=0.17 3=0.25 4=0.38 5=0.50 6=0.75 7=1.00 8=1.5 9=2.0 10=3.0 11=4.0 12=6.0 13=8.0
DEFAULT_PGM_MAIN_I_GAIN EQU 7 ; 1=0.13 2=0.17 3=0.25 4=0.38 5=0.50 6=0.75 7=1.00 8=1.5 9=2.0 10=3.0 11=4.0 12=6.0 13=8.0
DEFAULT_PGM_MAIN_GOVERNOR_MODE EQU 1 ; 1=Tx 2=Arm 3=Setup 4=Off
DEFAULT_PGM_MAIN_GOVERNOR_RANGE EQU 1 ; 1=High 2=Middle 3=Low
DEFAULT_PGM_MAIN_LOW_VOLTAGE_LIM EQU 4 ; 1=Off 2=3.0V/c 3=3.1V/c 4=3.2V/c 5=3.3V/c 6=3.4V/c
DEFAULT_PGM_MAIN_COMM_TIMING EQU 3 ; 1=Low 2=MediumLow 3=Medium 4=MediumHigh 5=High
IF DAMPED_MODE_ENABLE == 1
DEFAULT_PGM_MAIN_PWM_FREQ EQU 2 ; 1=High 2=Low 3=DampedLight
ELSE
DEFAULT_PGM_MAIN_PWM_FREQ EQU 2 ; 1=High 2=Low
ENDIF
DEFAULT_PGM_MAIN_DEMAG_COMP EQU 1 ; 1=Disabled 2=Low 3=High
DEFAULT_PGM_MAIN_DIRECTION EQU 1 ; 1=Normal 2=Reversed
DEFAULT_PGM_MAIN_RCP_PWM_POL EQU 1 ; 1=Positive 2=Negative
DEFAULT_PGM_MAIN_GOV_SETUP_TARGET EQU 180 ; Target for governor in setup mode. Corresponds to 70% throttle
DEFAULT_PGM_MAIN_REARM_START EQU 0 ; 1=Enabled 0=Disabled
DEFAULT_PGM_MAIN_BEEP_STRENGTH EQU 120 ; Beep strength
DEFAULT_PGM_MAIN_BEACON_STRENGTH EQU 200 ; Beacon strength
DEFAULT_PGM_MAIN_BEACON_DELAY EQU 4 ; 1=1m 2=2m 3=5m 4=10m 5=Infinite
; TAIL
DEFAULT_PGM_TAIL_GAIN EQU 3 ; 1=0.75 2=0.88 3=1.00 4=1.12 5=1.25
DEFAULT_PGM_TAIL_IDLE_SPEED EQU 4 ; 1=Low 2=MediumLow 3=Medium 4=MediumHigh 5=High
DEFAULT_PGM_TAIL_COMM_TIMING EQU 3 ; 1=Low 2=MediumLow 3=Medium 4=MediumHigh 5=High
IF DAMPED_MODE_ENABLE == 1
DEFAULT_PGM_TAIL_PWM_FREQ EQU 3 ; 1=High 2=Low 3=DampedLight
ELSE
DEFAULT_PGM_TAIL_PWM_FREQ EQU 1 ; 1=High 2=Low
ENDIF
DEFAULT_PGM_TAIL_DEMAG_COMP EQU 1 ; 1=Disabled 2=Low 3=High
DEFAULT_PGM_TAIL_DIRECTION EQU 1 ; 1=Normal 2=Reversed 3=Bidirectional
DEFAULT_PGM_TAIL_RCP_PWM_POL EQU 1 ; 1=Positive 2=Negative
DEFAULT_PGM_TAIL_BEEP_STRENGTH EQU 250 ; Beep strength
DEFAULT_PGM_TAIL_BEACON_STRENGTH EQU 250 ; Beacon strength
DEFAULT_PGM_TAIL_BEACON_DELAY EQU 4 ; 1=1m 2=2m 3=5m 4=10m 5=Infinite
DEFAULT_PGM_TAIL_PWM_DITHER EQU 3 ; 1=Off 2=3 3=7 4=15 5=31
; MULTI
DEFAULT_PGM_MULTI_P_GAIN EQU 9 ; 1=0.13 2=0.17 3=0.25 4=0.38 5=0.50 6=0.75 7=1.00 8=1.5 9=2.0 10=3.0 11=4.0 12=6.0 13=8.0
DEFAULT_PGM_MULTI_I_GAIN EQU 9 ; 1=0.13 2=0.17 3=0.25 4=0.38 5=0.50 6=0.75 7=1.00 8=1.5 9=2.0 10=3.0 11=4.0 12=6.0 13=8.0
DEFAULT_PGM_MULTI_GOVERNOR_MODE EQU 4 ; 1=HiRange 2=MidRange 3=LoRange 4=Off
DEFAULT_PGM_MULTI_GAIN EQU 3 ; 1=0.75 2=0.88 3=1.00 4=1.12 5=1.25
DEFAULT_PGM_MULTI_COMM_TIMING EQU 3 ; 1=Low 2=MediumLow 3=Medium 4=MediumHigh 5=High
IF DAMPED_MODE_ENABLE == 1
DEFAULT_PGM_MULTI_PWM_FREQ EQU 3 ; 1=High 2=Low 3=DampedLight
ELSE
DEFAULT_PGM_MULTI_PWM_FREQ EQU 1 ; 1=High 2=Low
ENDIF
DEFAULT_PGM_MULTI_DEMAG_COMP EQU 2 ; 1=Disabled 2=Low 3=High
DEFAULT_PGM_MULTI_DIRECTION EQU 1 ; 1=Normal 2=Reversed 3=Bidirectional
DEFAULT_PGM_MULTI_RCP_PWM_POL EQU 1 ; 1=Positive 2=Negative
DEFAULT_PGM_MULTI_BEEP_STRENGTH EQU 40 ; Beep strength
DEFAULT_PGM_MULTI_BEACON_STRENGTH EQU 80 ; Beacon strength
DEFAULT_PGM_MULTI_BEACON_DELAY EQU 4 ; 1=1m 2=2m 3=5m 4=10m 5=Infinite
DEFAULT_PGM_MULTI_PWM_DITHER EQU 3 ; 1=Off 2=3 3=7 4=15 5=31
; COMMON
DEFAULT_PGM_ENABLE_TX_PROGRAM EQU 1 ; 1=Enabled 0=Disabled
DEFAULT_PGM_PPM_MIN_THROTTLE EQU 37 ; 4*37+1000=1148
DEFAULT_PGM_PPM_MAX_THROTTLE EQU 208 ; 4*208+1000=1832
DEFAULT_PGM_PPM_CENTER_THROTTLE EQU 122 ; 4*122+1000=1488 (used in bidirectional mode)
DEFAULT_PGM_BEC_VOLTAGE_HIGH EQU 0 ; 0=Low 1+= High or higher
DEFAULT_PGM_ENABLE_TEMP_PROT EQU 1 ; 1=Enabled 0=Disabled
DEFAULT_PGM_ENABLE_POWER_PROT EQU 1 ; 1=Enabled 0=Disabled
DEFAULT_PGM_ENABLE_PWM_INPUT EQU 0 ; 1=Enabled 0=Disabled
DEFAULT_PGM_BRAKE_ON_STOP EQU 0 ; 1=Enabled 0=Disabled
;**** **** **** **** ****
; Constant definitions for main
IF MODE == 0
GOV_SPOOLRATE EQU 2 ; Number of steps for governor requested pwm per 32ms
RCP_TIMEOUT_PPM EQU 10 ; Number of timer2H overflows (about 32ms) before considering rc pulse lost
RCP_TIMEOUT EQU 64 ; Number of timer2L overflows (about 128us) before considering rc pulse lost
RCP_SKIP_RATE EQU 32 ; Number of timer2L overflows (about 128us) before reenabling rc pulse detection
RCP_MIN EQU 0 ; This is minimum RC pulse length
RCP_MAX EQU 255 ; This is maximum RC pulse length
RCP_VALIDATE EQU 2 ; Require minimum this pulse length to validate RC pulse
RCP_STOP EQU 1 ; Stop motor at or below this pulse length
RCP_STOP_LIMIT EQU 250 ; Stop motor if this many timer2H overflows (~32ms) are below stop limit
PWM_START EQU 50 ; PWM used as max power during start
COMM_TIME_MIN EQU 1 ; Minimum time (in us) for commutation wait
TEMP_CHECK_RATE EQU 8 ; Number of adc conversions for each check of temperature (the other conversions are used for voltage)
ENDIF
; Constant definitions for tail
IF MODE == 1
GOV_SPOOLRATE EQU 1 ; Number of steps for governor requested pwm per 32ms
RCP_TIMEOUT_PPM EQU 10 ; Number of timer2H overflows (about 32ms) before considering rc pulse lost
RCP_TIMEOUT EQU 24 ; Number of timer2L overflows (about 128us) before considering rc pulse lost
RCP_SKIP_RATE EQU 6 ; Number of timer2L overflows (about 128us) before reenabling rc pulse detection
RCP_MIN EQU 0 ; This is minimum RC pulse length
RCP_MAX EQU 255 ; This is maximum RC pulse length
RCP_VALIDATE EQU 2 ; Require minimum this pulse length to validate RC pulse
RCP_STOP EQU 1 ; Stop motor at or below this pulse length
RCP_STOP_LIMIT EQU 130 ; Stop motor if this many timer2H overflows (~32ms) are below stop limit
PWM_START EQU 50 ; PWM used as max power during start
COMM_TIME_MIN EQU 1 ; Minimum time (in us) for commutation wait
TEMP_CHECK_RATE EQU 8 ; Number of adc conversions for each check of temperature (the other conversions are used for voltage)
ENDIF
; Constant definitions for multi
IF MODE == 2
GOV_SPOOLRATE EQU 1 ; Number of steps for governor requested pwm per 32ms
RCP_TIMEOUT_PPM EQU 10 ; Number of timer2H overflows (about 32ms) before considering rc pulse lost
RCP_TIMEOUT EQU 24 ; Number of timer2L overflows (about 128us) before considering rc pulse lost
RCP_SKIP_RATE EQU 6 ; Number of timer2L overflows (about 128us) before reenabling rc pulse detection
RCP_MIN EQU 0 ; This is minimum RC pulse length
RCP_MAX EQU 255 ; This is maximum RC pulse length
RCP_VALIDATE EQU 2 ; Require minimum this pulse length to validate RC pulse
RCP_STOP EQU 1 ; Stop motor at or below this pulse length
RCP_STOP_LIMIT EQU 250 ; Stop motor if this many timer2H overflows (~32ms) are below stop limit
PWM_START EQU 50 ; PWM used as max power during start
COMM_TIME_MIN EQU 1 ; Minimum time (in us) for commutation wait
TEMP_CHECK_RATE EQU 8 ; Number of adc conversions for each check of temperature (the other conversions are used for voltage)
ENDIF
;**** **** **** **** ****
; Temporary register definitions
Temp1 EQU R0
Temp2 EQU R1
Temp3 EQU R2
Temp4 EQU R3
Temp5 EQU R4
Temp6 EQU R5
Temp7 EQU R6
Temp8 EQU R7
;**** **** **** **** ****
; Register definitions
DSEG AT 20h ; Variables segment
Bit_Access: DS 1 ; MUST BE AT THIS ADDRESS. Variable at bit accessible address (for non interrupt routines)
Bit_Access_Int: DS 1 ; Variable at bit accessible address (for interrupts)
Requested_Pwm: DS 1 ; Requested pwm (from RC pulse value)
Governor_Req_Pwm: DS 1 ; Governor requested pwm (sets governor target)
Current_Pwm: DS 1 ; Current pwm
Current_Pwm_Limited: DS 1 ; Current pwm that is limited
Current_Pwm_Lim_Dith: DS 1 ; Current pwm that is limited and dithered (applied to the motor output)
Rcp_Prev_Edge_L: DS 1 ; RC pulse previous edge timer3 timestamp (lo byte)
Rcp_Prev_Edge_H: DS 1 ; RC pulse previous edge timer3 timestamp (hi byte)
Rcp_Outside_Range_Cnt: DS 1 ; RC pulse outside range counter (incrementing)
Rcp_Timeout_Cntd: DS 1 ; RC pulse timeout counter (decrementing)
Rcp_Skip_Cntd: DS 1 ; RC pulse skip counter (decrementing)
Flags0: DS 1 ; State flags. Reset upon init_start
T3_PENDING EQU 0 ; Timer3 pending flag
RCP_MEAS_PWM_FREQ EQU 1 ; Measure RC pulse pwm frequency
PWM_ON EQU 2 ; Set in on part of pwm cycle
PWM_TIMER0_OVERFLOW EQU 3 ; Set for 48MHz MCUs when PWM timer 0 overflows
DEMAG_DETECTED EQU 4 ; Set when excessive demag time is detected
DEMAG_CUT_POWER EQU 5 ; Set when demag compensation cuts power
HIGH_RPM EQU 6 ; Set when motor rpm is high (Comm_Period4x_H less than 2)
; EQU 7
Flags1: DS 1 ; State flags. Reset upon init_start
MOTOR_SPINNING EQU 0 ; Set when in motor is spinning
STARTUP_PHASE EQU 1 ; Set when in startup phase
INITIAL_RUN_PHASE EQU 2 ; Set when in initial run phase, before synchronized run is achieved
MOTOR_STARTED EQU 3 ; Set when motor is started
DIR_CHANGE_BRAKE EQU 4 ; Set when braking before direction change
COMP_TIMED_OUT EQU 5 ; Set when comparator reading timed out
GOV_ACTIVE EQU 6 ; Set when governor is active (enabled when speed is above minimum)
SKIP_DAMP_ON EQU 7 ; Set when turning damping fet on is skipped
Flags2: DS 1 ; State flags. NOT reset upon init_start
RCP_UPDATED EQU 0 ; New RC pulse length value available
RCP_EDGE_NO EQU 1 ; RC pulse edge no. 0=rising, 1=falling
PGM_PWMOFF_DAMPED EQU 2 ; Programmed pwm off damped mode
PGM_PWM_HIGH_FREQ EQU 3 ; Progremmed pwm high frequency
RCP_PPM EQU 4 ; RC pulse ppm type input (set also when oneshot is set)
RCP_PPM_ONESHOT125 EQU 5 ; RC pulse ppm type input is OneShot125
RCP_DIR_REV EQU 6 ; RC pulse direction in bidirectional mode
; EQU 7
Flags3: DS 1 ; State flags. NOT reset upon init_start
RCP_PWM_FREQ_1KHZ EQU 0 ; RC pulse pwm frequency is 1kHz
RCP_PWM_FREQ_2KHZ EQU 1 ; RC pulse pwm frequency is 2kHz
RCP_PWM_FREQ_4KHZ EQU 2 ; RC pulse pwm frequency is 4kHz
RCP_PWM_FREQ_8KHZ EQU 3 ; RC pulse pwm frequency is 8kHz
RCP_PWM_FREQ_12KHZ EQU 4 ; RC pulse pwm frequency is 12kHz
PGM_DIR_REV EQU 5 ; Programmed direction. 0=normal, 1=reversed
PGM_RCP_PWM_POL EQU 6 ; Programmed RC pulse pwm polarity. 0=positive, 1=negative
FULL_THROTTLE_RANGE EQU 7 ; When set full throttle range is used (1000-2000us) and stored calibration values are ignored
;**** **** **** **** ****
; RAM definitions
DSEG AT 30h ; Ram data segment, direct addressing
Initial_Arm: DS 1 ; Variable that is set during the first arm sequence after power on
Power_On_Wait_Cnt_L: DS 1 ; Power on wait counter (lo byte)
Power_On_Wait_Cnt_H: DS 1 ; Power on wait counter (hi byte)
Startup_Cnt: DS 1 ; Startup phase commutations counter (incrementing)
Startup_Zc_Timeout_Cntd: DS 1 ; Startup zero cross timeout counter (decrementing)
Initial_Run_Rot_Cntd: DS 1 ; Initial run rotations counter (decrementing)
Stall_Cnt: DS 1 ; Counts start/run attempts that resulted in stall. Reset upon a proper stop
Demag_Detected_Metric: DS 1 ; Metric used to gauge demag event frequency
Demag_Pwr_Off_Thresh: DS 1 ; Metric threshold above which power is cut
Low_Rpm_Pwr_Slope: DS 1 ; Sets the slope of power increase for low rpms
Timer2_X: DS 1 ; Timer 2 extended byte
Prev_Comm_L: DS 1 ; Previous commutation timer3 timestamp (lo byte)
Prev_Comm_H: DS 1 ; Previous commutation timer3 timestamp (hi byte)
Prev_Comm_X: DS 1 ; Previous commutation timer3 timestamp (ext byte)
Prev_Prev_Comm_L: DS 1 ; Pre-previous commutation timer3 timestamp (lo byte)
Prev_Prev_Comm_H: DS 1 ; Pre-previous commutation timer3 timestamp (hi byte)
Comm_Period4x_L: DS 1 ; Timer3 counts between the last 4 commutations (lo byte)
Comm_Period4x_H: DS 1 ; Timer3 counts between the last 4 commutations (hi byte)
Comm_Phase: DS 1 ; Current commutation phase
Comparator_Read_Cnt: DS 1 ; Number of comparator reads done
Gov_Target_L: DS 1 ; Governor target (lo byte)
Gov_Target_H: DS 1 ; Governor target (hi byte)
Gov_Integral_L: DS 1 ; Governor integral error (lo byte)
Gov_Integral_H: DS 1 ; Governor integral error (hi byte)
Gov_Integral_X: DS 1 ; Governor integral error (ex byte)
Gov_Proportional_L: DS 1 ; Governor proportional error (lo byte)
Gov_Proportional_H: DS 1 ; Governor proportional error (hi byte)
Gov_Prop_Pwm: DS 1 ; Governor calculated new pwm based upon proportional error
Gov_Arm_Target: DS 1 ; Governor arm target value
Wt_Adv_Start_L: DS 1 ; Timer3 start point for commutation advance timing (lo byte)
Wt_Adv_Start_H: DS 1 ; Timer3 start point for commutation advance timing (hi byte)
Wt_Zc_Scan_Start_L: DS 1 ; Timer3 start point from commutation to zero cross scan (lo byte)
Wt_Zc_Scan_Start_H: DS 1 ; Timer3 start point from commutation to zero cross scan (hi byte)
Wt_Zc_Tout_Start_L: DS 1 ; Timer3 start point for zero cross scan timeout (lo byte)
Wt_Zc_Tout_Start_H: DS 1 ; Timer3 start point for zero cross scan timeout (hi byte)
Wt_Comm_Start_L: DS 1 ; Timer3 start point from zero cross to commutation (lo byte)
Wt_Comm_Start_H: DS 1 ; Timer3 start point from zero cross to commutation (hi byte)
Rcp_PrePrev_Edge_L: DS 1 ; RC pulse pre previous edge pca timestamp (lo byte)
Rcp_PrePrev_Edge_H: DS 1 ; RC pulse pre previous edge pca timestamp (hi byte)
Rcp_Edge_L: DS 1 ; RC pulse edge pca timestamp (lo byte)
Rcp_Edge_H: DS 1 ; RC pulse edge pca timestamp (hi byte)
Rcp_Prev_Period_L: DS 1 ; RC pulse previous period (lo byte)
Rcp_Prev_Period_H: DS 1 ; RC pulse previous period (hi byte)
Rcp_Period_Diff_Accepted: DS 1 ; RC pulse period difference acceptable
New_Rcp: DS 1 ; New RC pulse value in pca counts
Prev_Rcp_Pwm_Freq: DS 1 ; Previous RC pulse pwm frequency (used during pwm frequency measurement)
Curr_Rcp_Pwm_Freq: DS 1 ; Current RC pulse pwm frequency (used during pwm frequency measurement)
Rcp_Stop_Cnt: DS 1 ; Counter for RC pulses below stop value
Auto_Bailout_Armed: DS 1 ; Set when auto rotation bailout is armed
Pwm_Limit: DS 1 ; Maximum allowed pwm
Pwm_Limit_Spoolup: DS 1 ; Maximum allowed pwm during spoolup
Pwm_Limit_By_Rpm: DS 1 ; Maximum allowed pwm for low or high rpms
Pwm_Spoolup_Beg: DS 1 ; Pwm to begin main spoolup with
Pwm_Motor_Idle: DS 1 ; Motor idle speed pwm
Pwm_Dither_Decoded: DS 1 ; Decoded pwm dither value
Pwm_Dither_Excess_Power: DS 1 ; Excess power (above max) from pwm dither
Random: DS 1 ; Random number from LFSR
Spoolup_Limit_Cnt: DS 1 ; Interrupt count for spoolup limit
Spoolup_Limit_Skip: DS 1 ; Interrupt skips for spoolup limit increment (1=no skips, 2=skip one etc)
Main_Spoolup_Time_3x: DS 1 ; Main spoolup time x3
Main_Spoolup_Time_10x: DS 1 ; Main spoolup time x10
Main_Spoolup_Time_15x: DS 1 ; Main spoolup time x15
Lipo_Adc_Limit_L: DS 1 ; Low voltage limit adc value (lo byte)
Lipo_Adc_Limit_H: DS 1 ; Low voltage limit adc value (hi byte)
Adc_Conversion_Cnt: DS 1 ; Adc conversion counter
Current_Average_Temp: DS 1 ; Current average temperature (lo byte ADC reading, assuming hi byte is 1)
Ppm_Throttle_Gain: DS 1 ; Gain to be applied to RCP value for PPM input
Beep_Strength: DS 1 ; Strength of beeps
Tx_Pgm_Func_No: DS 1 ; Function number when doing programming by tx
Tx_Pgm_Paraval_No: DS 1 ; Parameter value number when doing programming by tx
Tx_Pgm_Beep_No: DS 1 ; Beep number when doing programming by tx
Skip_T2_Int: DS 1 ; Set for 48MHz MCUs when timer 2 interrupt shall be ignored
Skip_T2h_Int: DS 1 ; Set for 48MHz MCUs when timer 2 high interrupt shall be ignored
Timer0_Overflow_Value: DS 1 ; Remaining timer 0 wait time used with 48MHz MCUs
Clock_Set_At_48MHz: DS 1 ; Variable set if 48MHz MCUs run at 48MHz
DampingFET: DS 1 ; Port position of fet used for damping
Flash_Key_1: DS 1 ; Flash key one
Flash_Key_2: DS 1 ; Flash key two
; Indirect addressing data segment. The variables below must be in this sequence
ISEG AT 080h
Pgm_Gov_P_Gain: DS 1 ; Programmed governor P gain
Pgm_Gov_I_Gain: DS 1 ; Programmed governor I gain
Pgm_Gov_Mode: DS 1 ; Programmed governor mode
Pgm_Low_Voltage_Lim: DS 1 ; Programmed low voltage limit
Pgm_Motor_Gain: DS 1 ; Programmed motor gain
Pgm_Motor_Idle: DS 1 ; Programmed motor idle speed
Pgm_Startup_Pwr: DS 1 ; Programmed startup power
Pgm_Pwm_Freq: DS 1 ; Programmed pwm frequency
Pgm_Direction: DS 1 ; Programmed rotation direction
Pgm_Input_Pol: DS 1 ; Programmed input pwm polarity
Initialized_L_Dummy: DS 1 ; Place holder
Initialized_H_Dummy: DS 1 ; Place holder
Pgm_Enable_TX_Program: DS 1 ; Programmed enable/disable value for TX programming
Pgm_Main_Rearm_Start: DS 1 ; Programmed enable/disable re-arming main every start
Pgm_Gov_Setup_Target: DS 1 ; Programmed main governor setup target
_Pgm_Startup_Rpm: DS 1 ; Programmed startup rpm (unused - place holder)
_Pgm_Startup_Accel: DS 1 ; Programmed startup acceleration (unused - place holder)
_Pgm_Volt_Comp: DS 1 ; Place holder
Pgm_Comm_Timing: DS 1 ; Programmed commutation timing
_Pgm_Damping_Force: DS 1 ; Programmed damping force (unused - place holder)
Pgm_Gov_Range: DS 1 ; Programmed governor range
_Pgm_Startup_Method: DS 1 ; Programmed startup method (unused - place holder)
Pgm_Ppm_Min_Throttle: DS 1 ; Programmed throttle minimum
Pgm_Ppm_Max_Throttle: DS 1 ; Programmed throttle maximum
Pgm_Beep_Strength: DS 1 ; Programmed beep strength
Pgm_Beacon_Strength: DS 1 ; Programmed beacon strength
Pgm_Beacon_Delay: DS 1 ; Programmed beacon delay
_Pgm_Throttle_Rate: DS 1 ; Programmed throttle rate (unused - place holder)
Pgm_Demag_Comp: DS 1 ; Programmed demag compensation
Pgm_BEC_Voltage_High: DS 1 ; Programmed BEC voltage
Pgm_Ppm_Center_Throttle: DS 1 ; Programmed throttle center (in bidirectional mode)
Pgm_Main_Spoolup_Time: DS 1 ; Programmed main spoolup time
Pgm_Enable_Temp_Prot: DS 1 ; Programmed temperature protection enable
Pgm_Enable_Power_Prot: DS 1 ; Programmed low rpm power protection enable
Pgm_Enable_Pwm_Input: DS 1 ; Programmed PWM input signal enable
Pgm_Pwm_Dither: DS 1 ; Programmed output PWM dither
Pgm_Brake_On_Stop: DS 1 ; Programmed braking when throttle is zero
; The sequence of the variables below is no longer of importance
Pgm_Gov_P_Gain_Decoded: DS 1 ; Programmed governor decoded P gain
Pgm_Gov_I_Gain_Decoded: DS 1 ; Programmed governor decoded I gain
Pgm_Startup_Pwr_Decoded: DS 1 ; Programmed startup power decoded
; Indirect addressing data segment
ISEG AT 0D0h
Tag_Temporary_Storage: DS 48 ; Temporary storage for tags when updating "Eeprom"
;**** **** **** **** ****
CSEG AT 1A00h ; "Eeprom" segment
EEPROM_FW_MAIN_REVISION EQU 14 ; Main revision of the firmware
EEPROM_FW_SUB_REVISION EQU 9 ; Sub revision of the firmware
EEPROM_LAYOUT_REVISION EQU 21 ; Revision of the EEPROM layout
Eep_FW_Main_Revision: DB EEPROM_FW_MAIN_REVISION ; EEPROM firmware main revision number
Eep_FW_Sub_Revision: DB EEPROM_FW_SUB_REVISION ; EEPROM firmware sub revision number
Eep_Layout_Revision: DB EEPROM_LAYOUT_REVISION ; EEPROM layout revision number
IF MODE == 0
Eep_Pgm_Gov_P_Gain: DB DEFAULT_PGM_MAIN_P_GAIN ; EEPROM copy of programmed governor P gain
Eep_Pgm_Gov_I_Gain: DB DEFAULT_PGM_MAIN_I_GAIN ; EEPROM copy of programmed governor I gain
Eep_Pgm_Gov_Mode: DB DEFAULT_PGM_MAIN_GOVERNOR_MODE ; EEPROM copy of programmed governor mode
Eep_Pgm_Low_Voltage_Lim: DB DEFAULT_PGM_MAIN_LOW_VOLTAGE_LIM ; EEPROM copy of programmed low voltage limit
_Eep_Pgm_Motor_Gain: DB 0FFh
_Eep_Pgm_Motor_Idle: DB 0FFh
Eep_Pgm_Startup_Pwr: DB DEFAULT_PGM_MAIN_STARTUP_PWR ; EEPROM copy of programmed startup power
Eep_Pgm_Pwm_Freq: DB DEFAULT_PGM_MAIN_PWM_FREQ ; EEPROM copy of programmed pwm frequency
Eep_Pgm_Direction: DB DEFAULT_PGM_MAIN_DIRECTION ; EEPROM copy of programmed rotation direction
Eep_Pgm_Input_Pol: DB DEFAULT_PGM_MAIN_RCP_PWM_POL ; EEPROM copy of programmed input polarity
Eep_Initialized_L: DB 0A5h ; EEPROM initialized signature low byte
Eep_Initialized_H: DB 05Ah ; EEPROM initialized signature high byte
Eep_Enable_TX_Program: DB DEFAULT_PGM_ENABLE_TX_PROGRAM ; EEPROM TX programming enable
Eep_Main_Rearm_Start: DB DEFAULT_PGM_MAIN_REARM_START ; EEPROM re-arming main enable
Eep_Pgm_Gov_Setup_Target: DB DEFAULT_PGM_MAIN_GOV_SETUP_TARGET ; EEPROM main governor setup target
_Eep_Pgm_Startup_Rpm: DB 0FFh
_Eep_Pgm_Startup_Accel: DB 0FFh
_Eep_Pgm_Volt_Comp: DB 0FFh
Eep_Pgm_Comm_Timing: DB DEFAULT_PGM_MAIN_COMM_TIMING ; EEPROM copy of programmed commutation timing
_Eep_Pgm_Damping_Force: DB 0FFh
Eep_Pgm_Gov_Range: DB DEFAULT_PGM_MAIN_GOVERNOR_RANGE ; EEPROM copy of programmed governor range
_Eep_Pgm_Startup_Method: DB 0FFh
Eep_Pgm_Ppm_Min_Throttle: DB DEFAULT_PGM_PPM_MIN_THROTTLE ; EEPROM copy of programmed minimum throttle (final value is 4x+1000=1148)
Eep_Pgm_Ppm_Max_Throttle: DB DEFAULT_PGM_PPM_MAX_THROTTLE ; EEPROM copy of programmed minimum throttle (final value is 4x+1000=1832)
Eep_Pgm_Beep_Strength: DB DEFAULT_PGM_MAIN_BEEP_STRENGTH ; EEPROM copy of programmed beep strength
Eep_Pgm_Beacon_Strength: DB DEFAULT_PGM_MAIN_BEACON_STRENGTH ; EEPROM copy of programmed beacon strength
Eep_Pgm_Beacon_Delay: DB DEFAULT_PGM_MAIN_BEACON_DELAY ; EEPROM copy of programmed beacon delay
_Eep_Pgm_Throttle_Rate: DB 0FFh
Eep_Pgm_Demag_Comp: DB DEFAULT_PGM_MAIN_DEMAG_COMP ; EEPROM copy of programmed demag compensation
Eep_Pgm_BEC_Voltage_High: DB DEFAULT_PGM_BEC_VOLTAGE_HIGH ; EEPROM copy of programmed BEC voltage
_Eep_Pgm_Ppm_Center_Throttle: DB 0FFh
Eep_Pgm_Main_Spoolup_Time: DB DEFAULT_PGM_MAIN_SPOOLUP_TIME ; EEPROM copy of programmed main spoolup time
Eep_Pgm_Temp_Prot_Enable: DB DEFAULT_PGM_ENABLE_TEMP_PROT ; EEPROM copy of programmed temperature protection enable
Eep_Pgm_Enable_Power_Prot: DB DEFAULT_PGM_ENABLE_POWER_PROT ; EEPROM copy of programmed low rpm power protection enable
Eep_Pgm_Enable_Pwm_Input: DB DEFAULT_PGM_ENABLE_PWM_INPUT ; EEPROM copy of programmed PWM input signal enable
_Eep_Pgm_Pwm_Dither: DB 0FFh
Eep_Pgm_Brake_On_Stop: DB DEFAULT_PGM_BRAKE_ON_STOP ; EEPROM copy of programmed braking when throttle is zero
ENDIF
IF MODE == 1
_Eep_Pgm_Gov_P_Gain: DB 0FFh
_Eep_Pgm_Gov_I_Gain: DB 0FFh
_Eep_Pgm_Gov_Mode: DB 0FFh
_Eep_Pgm_Low_Voltage_Lim: DB 0FFh
Eep_Pgm_Motor_Gain: DB DEFAULT_PGM_TAIL_GAIN ; EEPROM copy of programmed tail gain
Eep_Pgm_Motor_Idle: DB DEFAULT_PGM_TAIL_IDLE_SPEED ; EEPROM copy of programmed tail idle speed
Eep_Pgm_Startup_Pwr: DB DEFAULT_PGM_TAIL_STARTUP_PWR ; EEPROM copy of programmed startup power
Eep_Pgm_Pwm_Freq: DB DEFAULT_PGM_TAIL_PWM_FREQ ; EEPROM copy of programmed pwm frequency
Eep_Pgm_Direction: DB DEFAULT_PGM_TAIL_DIRECTION ; EEPROM copy of programmed rotation direction
Eep_Pgm_Input_Pol: DB DEFAULT_PGM_TAIL_RCP_PWM_POL ; EEPROM copy of programmed input polarity
Eep_Initialized_L: DB 05Ah ; EEPROM initialized signature low byte
Eep_Initialized_H: DB 0A5h ; EEPROM initialized signature high byte
Eep_Enable_TX_Program: DB DEFAULT_PGM_ENABLE_TX_PROGRAM ; EEPROM TX programming enable
_Eep_Main_Rearm_Start: DB 0FFh
_Eep_Pgm_Gov_Setup_Target: DB 0FFh
_Eep_Pgm_Startup_Rpm: DB 0FFh
_Eep_Pgm_Startup_Accel: DB 0FFh
_Eep_Pgm_Volt_Comp: DB 0FFh
Eep_Pgm_Comm_Timing: DB DEFAULT_PGM_TAIL_COMM_TIMING ; EEPROM copy of programmed commutation timing
_Eep_Pgm_Damping_Force: DB 0FFh
_Eep_Pgm_Gov_Range: DB 0FFh
_Eep_Pgm_Startup_Method: DB 0FFh
Eep_Pgm_Ppm_Min_Throttle: DB DEFAULT_PGM_PPM_MIN_THROTTLE ; EEPROM copy of programmed minimum throttle (final value is 4x+1000=1148)
Eep_Pgm_Ppm_Max_Throttle: DB DEFAULT_PGM_PPM_MAX_THROTTLE ; EEPROM copy of programmed minimum throttle (final value is 4x+1000=1832)
Eep_Pgm_Beep_Strength: DB DEFAULT_PGM_TAIL_BEEP_STRENGTH ; EEPROM copy of programmed beep strength
Eep_Pgm_Beacon_Strength: DB DEFAULT_PGM_TAIL_BEACON_STRENGTH ; EEPROM copy of programmed beacon strength
Eep_Pgm_Beacon_Delay: DB DEFAULT_PGM_TAIL_BEACON_DELAY ; EEPROM copy of programmed beacon delay
_Eep_Pgm_Throttle_Rate: DB 0FFh
Eep_Pgm_Demag_Comp: DB DEFAULT_PGM_TAIL_DEMAG_COMP ; EEPROM copy of programmed demag compensation
Eep_Pgm_BEC_Voltage_High: DB DEFAULT_PGM_BEC_VOLTAGE_HIGH ; EEPROM copy of programmed BEC voltage
Eep_Pgm_Ppm_Center_Throttle: DB DEFAULT_PGM_PPM_CENTER_THROTTLE ; EEPROM copy of programmed center throttle (final value is 4x+1000=1488)
_Eep_Pgm_Main_Spoolup_Time: DB 0FFh
Eep_Pgm_Temp_Prot_Enable: DB DEFAULT_PGM_ENABLE_TEMP_PROT ; EEPROM copy of programmed temperature protection enable
Eep_Pgm_Enable_Power_Prot: DB DEFAULT_PGM_ENABLE_POWER_PROT ; EEPROM copy of programmed low rpm power protection enable
Eep_Pgm_Enable_Pwm_Input: DB DEFAULT_PGM_ENABLE_PWM_INPUT ; EEPROM copy of programmed PWM input signal enable
Eep_Pgm_Pwm_Dither: DB DEFAULT_PGM_TAIL_PWM_DITHER ; EEPROM copy of programmed output PWM dither
Eep_Pgm_Brake_On_Stop: DB DEFAULT_PGM_BRAKE_ON_STOP ; EEPROM copy of programmed braking when throttle is zero
ENDIF
IF MODE == 2
Eep_Pgm_Gov_P_Gain: DB DEFAULT_PGM_MULTI_P_GAIN ; EEPROM copy of programmed closed loop P gain
Eep_Pgm_Gov_I_Gain: DB DEFAULT_PGM_MULTI_I_GAIN ; EEPROM copy of programmed closed loop I gain
Eep_Pgm_Gov_Mode: DB DEFAULT_PGM_MULTI_GOVERNOR_MODE ; EEPROM copy of programmed closed loop mode
_Eep_Pgm_Low_Voltage_Lim: DB 0FFh
Eep_Pgm_Motor_Gain: DB DEFAULT_PGM_MULTI_GAIN ; EEPROM copy of programmed tail gain
_Eep_Pgm_Motor_Idle: DB 0FFh ; EEPROM copy of programmed tail idle speed
Eep_Pgm_Startup_Pwr: DB DEFAULT_PGM_MULTI_STARTUP_PWR ; EEPROM copy of programmed startup power
Eep_Pgm_Pwm_Freq: DB DEFAULT_PGM_MULTI_PWM_FREQ ; EEPROM copy of programmed pwm frequency
Eep_Pgm_Direction: DB DEFAULT_PGM_MULTI_DIRECTION ; EEPROM copy of programmed rotation direction
Eep_Pgm_Input_Pol: DB DEFAULT_PGM_MULTI_RCP_PWM_POL ; EEPROM copy of programmed input polarity
Eep_Initialized_L: DB 055h ; EEPROM initialized signature low byte
Eep_Initialized_H: DB 0AAh ; EEPROM initialized signature high byte
Eep_Enable_TX_Program: DB DEFAULT_PGM_ENABLE_TX_PROGRAM ; EEPROM TX programming enable
_Eep_Main_Rearm_Start: DB 0FFh
_Eep_Pgm_Gov_Setup_Target: DB 0FFh
_Eep_Pgm_Startup_Rpm: DB 0FFh
_Eep_Pgm_Startup_Accel: DB 0FFh
_Eep_Pgm_Volt_Comp: DB 0FFh
Eep_Pgm_Comm_Timing: DB DEFAULT_PGM_MULTI_COMM_TIMING ; EEPROM copy of programmed commutation timing
_Eep_Pgm_Damping_Force: DB 0FFh
_Eep_Pgm_Gov_Range: DB 0FFh
_Eep_Pgm_Startup_Method: DB 0FFh
Eep_Pgm_Ppm_Min_Throttle: DB DEFAULT_PGM_PPM_MIN_THROTTLE ; EEPROM copy of programmed minimum throttle (final value is 4x+1000=1148)
Eep_Pgm_Ppm_Max_Throttle: DB DEFAULT_PGM_PPM_MAX_THROTTLE ; EEPROM copy of programmed minimum throttle (final value is 4x+1000=1832)
Eep_Pgm_Beep_Strength: DB DEFAULT_PGM_MULTI_BEEP_STRENGTH ; EEPROM copy of programmed beep strength
Eep_Pgm_Beacon_Strength: DB DEFAULT_PGM_MULTI_BEACON_STRENGTH ; EEPROM copy of programmed beacon strength
Eep_Pgm_Beacon_Delay: DB DEFAULT_PGM_MULTI_BEACON_DELAY ; EEPROM copy of programmed beacon delay
_Eep_Pgm_Throttle_Rate: DB 0FFh
Eep_Pgm_Demag_Comp: DB DEFAULT_PGM_MULTI_DEMAG_COMP ; EEPROM copy of programmed demag compensation
Eep_Pgm_BEC_Voltage_High: DB DEFAULT_PGM_BEC_VOLTAGE_HIGH ; EEPROM copy of programmed BEC voltage
Eep_Pgm_Ppm_Center_Throttle: DB DEFAULT_PGM_PPM_CENTER_THROTTLE ; EEPROM copy of programmed center throttle (final value is 4x+1000=1488)
_Eep_Pgm_Main_Spoolup_Time: DB 0FFh
Eep_Pgm_Temp_Prot_Enable: DB DEFAULT_PGM_ENABLE_TEMP_PROT ; EEPROM copy of programmed temperature protection enable
Eep_Pgm_Enable_Power_Prot: DB DEFAULT_PGM_ENABLE_POWER_PROT ; EEPROM copy of programmed low rpm power protection enable
Eep_Pgm_Enable_Pwm_Input: DB DEFAULT_PGM_ENABLE_PWM_INPUT ; EEPROM copy of programmed PWM input signal enable
Eep_Pgm_Pwm_Dither: DB DEFAULT_PGM_MULTI_PWM_DITHER ; EEPROM copy of programmed output PWM dither
Eep_Pgm_Brake_On_Stop: DB DEFAULT_PGM_BRAKE_ON_STOP ; EEPROM copy of programmed braking when throttle is zero
ENDIF
Eep_Dummy: DB 0FFh ; EEPROM address for safety reason
CSEG AT 1A60h
Eep_Name: DB " " ; Name tag (16 Bytes)
;**** **** **** **** ****
Interrupt_Table_Definition ; SiLabs interrupts
CSEG AT 80h ; Code segment after interrupt vectors
;**** **** **** **** ****
; Table definitions
GOV_GAIN_TABLE: DB 02h, 03h, 04h, 06h, 08h, 0Ch, 10h, 18h, 20h, 30h, 40h, 60h, 80h
STARTUP_POWER_TABLE: DB 04h, 06h, 08h, 0Ch, 10h, 18h, 20h, 30h, 40h, 60h, 80h, 0A0h, 0C0h
PWM_DITHER_TABLE: DB 00h, 03h, 07h, 0Fh, 1Fh
IF MODE == 0
IF DAMPED_MODE_ENABLE == 1
TX_PGM_PARAMS_MAIN: DB 13, 13, 4, 3, 6, 13, 5, 3, 3, 2, 2
ENDIF
IF DAMPED_MODE_ENABLE == 0
TX_PGM_PARAMS_MAIN: DB 13, 13, 4, 3, 6, 13, 5, 2, 3, 2, 2
ENDIF
ENDIF
IF MODE == 1
IF DAMPED_MODE_ENABLE == 1
TX_PGM_PARAMS_TAIL: DB 5, 5, 13, 5, 3, 5, 3, 3, 2
ENDIF
IF DAMPED_MODE_ENABLE == 0
TX_PGM_PARAMS_TAIL: DB 5, 5, 13, 5, 2, 5, 3, 3, 2
ENDIF
ENDIF
IF MODE == 2
IF DAMPED_MODE_ENABLE == 1
TX_PGM_PARAMS_MULTI: DB 13, 13, 4, 5, 13, 5, 3, 5, 3, 3, 2
ENDIF
IF DAMPED_MODE_ENABLE == 0
TX_PGM_PARAMS_MULTI: DB 13, 13, 4, 5, 13, 5, 2, 5, 3, 3, 2
ENDIF
ENDIF
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Timer0 interrupt routine
;
; Assumptions: DPTR register must be set to desired pwm_nfet_on label
; Requirements: Temp variables can NOT be used since PSW.3 is not set
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
t0_int: ; Used for pwm control
clr EA ; Disable all interrupts
IF MCU_48MHZ == 1
; Check overflow flag
jnb Flags0.PWM_TIMER0_OVERFLOW, t0_int_start; Execute this interrupt
clr Flags0.PWM_TIMER0_OVERFLOW
mov TL0, Timer0_Overflow_Value ; Set timer
setb EA ; Enable all interrupts
reti
t0_int_start:
ENDIF
push PSW ; Preserve registers through interrupt
push ACC
; Check if pwm is on
jb Flags0.PWM_ON, t0_int_pwm_off ; Is pwm on?
; Pwm on cycle
mov A, Current_Pwm_Limited
jz t0_int_pwm_on_ret
clr A
jmp @A+DPTR ; Jump to pwm on routines. DPTR should be set to one of the pwm_nfet_on labels
t0_int_pwm_on_exit:
; Set timer for coming on cycle length
mov A, Current_Pwm_Limited ; Load current pwm
cpl A ; cpl is 255-x
IF MCU_48MHZ == 0
mov TL0, A ; Write start point for timer
ELSE
clr C
rlc A
jc t0_int_pwm_on_set_timer
mov TL0, #0
setb Flags0.PWM_TIMER0_OVERFLOW
mov Timer0_Overflow_Value, A
ajmp t0_int_pwm_on_timer_set
t0_int_pwm_on_set_timer:
mov TL0, A
t0_int_pwm_on_timer_set:
ENDIF
; Set other variables
setb Flags0.PWM_ON ; Set pwm on flag
t0_int_pwm_on_ret:
; Exit interrupt
pop ACC ; Restore preserved registers
pop PSW
setb EA ; Enable all interrupts
reti
; Pwm off cycle
t0_int_pwm_off:
IF MCU_48MHZ == 0
mov TL0, Current_Pwm_Lim_Dith ; Load new timer setting
ELSE
clr C
mov A, Current_Pwm_Lim_Dith
rlc A
jc t0_int_pwm_off_set_timer
mov TL0, #0
setb Flags0.PWM_TIMER0_OVERFLOW
mov Timer0_Overflow_Value, A
ajmp t0_int_pwm_off_timer_set
t0_int_pwm_off_set_timer:
mov TL0, A
t0_int_pwm_off_timer_set:
ENDIF
; Clear pwm on flag
clr Flags0.PWM_ON
; Set full PWM (on all the time) if current PWM near max. This will give full power, but at the cost of a small "jump" in power
mov A, Current_Pwm_Lim_Dith ; Load current pwm
cpl A ; Full pwm?
jz t0_int_pwm_off_fullpower_exit ; Yes - exit
IF DAMPED_MODE_ENABLE == 1
; Do not execute pwm off when stopped
jnb Flags1.MOTOR_SPINNING, t0_int_pwm_off_exit
; If damped operation, set pFETs on in pwm_off
jb Flags2.PGM_PWMOFF_DAMPED, t0_int_pwm_off_damped ; Damped operation?
ENDIF
t0_int_pwm_off_exit_nfets_off:
; Separate exit commands here for minimum delay
IF NFETON_DELAY == 0
En_Off ; For EN/PWM style drivers. Uses accumulator
ENDIF
pop ACC ; Restore preserved registers
pop PSW
IF NFETON_DELAY NE 0
All_nFETs_Off ; Switch off all nfets
ENDIF
setb EA ; Enable all interrupts
reti
t0_int_pwm_off_damped:
IF PFETON_DELAY < 128
IF PFETON_DELAY NE 0
All_nFETs_Off ; Switch off all nfets
ELSE
En_Off
ENDIF
jb Flags1.SKIP_DAMP_ON, t0_int_pwm_off_damp_done
jb Flags0.DEMAG_CUT_POWER, t0_int_pwm_off_damp_done
IF PFETON_DELAY NE 0
mov A, #PFETON_DELAY
djnz ACC, $
ENDIF
Damping_FET_on
t0_int_pwm_off_damp_done:
ENDIF
IF PFETON_DELAY >= 128 ; "Negative", 1's complement
jb Flags1.SKIP_DAMP_ON, t0_int_pwm_off_damp_done
jb Flags0.DEMAG_CUT_POWER, t0_int_pwm_off_damp_done
Damping_FET_on ; Damping fet on
mov A, #PFETON_DELAY
cpl A
djnz ACC, $
t0_int_pwm_off_damp_done:
All_nFETs_Off ; Switch off all nfets
ENDIF
t0_int_pwm_off_exit:
pop ACC ; Restore preserved registers
pop PSW
setb EA ; Enable all interrupts
reti
t0_int_pwm_off_fullpower_exit:
mov TL0, #0 ; Set long time till next interrupt
IF MCU_48MHZ == 1
setb Flags0.PWM_TIMER0_OVERFLOW
mov Timer0_Overflow_Value, #0
ENDIF
clr TF0 ; Clear interrupt flag
setb Flags0.PWM_ON
ajmp t0_int_pwm_off_exit
pwm_nofet: ; Dummy pwm on cycle
ajmp t0_int_pwm_on_exit
pwm_afet: ; Pwm on cycle afet on
jnb Flags1.MOTOR_SPINNING, pwm_afet_exit
jb Flags0.DEMAG_CUT_POWER, pwm_afet_exit
AnFET_on
pwm_afet_exit:
ajmp t0_int_pwm_on_exit
pwm_bfet: ; Pwm on cycle bfet on
jnb Flags1.MOTOR_SPINNING, pwm_bfet_exit
jb Flags0.DEMAG_CUT_POWER, pwm_bfet_exit
BnFET_on
pwm_bfet_exit:
ajmp t0_int_pwm_on_exit
pwm_cfet: ; Pwm on cycle cfet on
jnb Flags1.MOTOR_SPINNING, pwm_cfet_exit
jb Flags0.DEMAG_CUT_POWER, pwm_cfet_exit
CnFET_on
pwm_cfet_exit:
ajmp t0_int_pwm_on_exit
pwm_afet_damped:
IF NFETON_DELAY NE 0
ApFET_off
ENDIF
jnb Flags1.MOTOR_SPINNING, pwm_afet_damped_exit
jb Flags0.DEMAG_CUT_POWER, pwm_afet_damped_exit
IF NFETON_DELAY NE 0
mov A, #NFETON_DELAY ; Set delay
djnz ACC, $
ENDIF
pwm_afet_damped_done:
AnFET_on ; Switch nFET
pwm_afet_damped_exit:
ajmp t0_int_pwm_on_exit
pwm_bfet_damped:
IF NFETON_DELAY NE 0
BpFET_off
ENDIF
jnb Flags1.MOTOR_SPINNING, pwm_bfet_damped_exit
jb Flags0.DEMAG_CUT_POWER, pwm_bfet_damped_exit
IF NFETON_DELAY NE 0
mov A, #NFETON_DELAY ; Set delay
djnz ACC, $
ENDIF
pwm_bfet_damped_done:
BnFET_on ; Switch nFET
pwm_bfet_damped_exit:
ajmp t0_int_pwm_on_exit
pwm_cfet_damped:
IF NFETON_DELAY NE 0
CpFET_off
ENDIF
jnb Flags1.MOTOR_SPINNING, pwm_cfet_damped_exit
jb Flags0.DEMAG_CUT_POWER, pwm_cfet_damped_exit
IF NFETON_DELAY NE 0
mov A, #NFETON_DELAY ; Set delay
djnz ACC, $
ENDIF
pwm_cfet_damped_done:
CnFET_on ; Switch nFET
pwm_cfet_damped_exit:
ajmp t0_int_pwm_on_exit
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Timer2 interrupt routine
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
t2_int: ; Happens every 128us for low byte and every 32ms for high byte
clr EA
clr ET2 ; Disable timer2 interrupts
anl EIE1, #0EFh ; Disable PCA0 interrupts
push PSW ; Preserve registers through interrupt
push ACC
setb PSW.3 ; Select register bank 1 for interrupt routines
setb EA
IF MCU_48MHZ == 1
mov A, Clock_Set_At_48MHz
jz t2_int_start
; Check skip variable
mov A, Skip_T2_Int
jz t2_int_start ; Execute this interrupt
mov Skip_T2_Int, #0
ajmp t2_int_exit
t2_int_start:
mov Skip_T2_Int, #1 ; Skip next interrupt
ENDIF
; Clear low byte interrupt flag
clr TF2L ; Clear interrupt flag
; Check RC pulse timeout counter
mov A, Rcp_Timeout_Cntd ; RC pulse timeout count zero?
jz t2_int_pulses_absent ; Yes - pulses are absent
; Decrement timeout counter (if PWM)
jb Flags2.RCP_PPM, t2_int_skip_start ; If flag is set (PPM) - branch
dec Rcp_Timeout_Cntd ; No - decrement
ajmp t2_int_skip_start
t2_int_pulses_absent:
; Timeout counter has reached zero, pulses are absent
mov Temp1, #RCP_MIN ; RCP_MIN as default
mov Temp2, #RCP_MIN
jb Flags2.RCP_PPM, t2_int_pulses_absent_no_max ; If flag is set (PPM) - branch
Read_Rcp_Int ; Look at value of Rcp_In
jnb ACC.Rcp_In, ($+5) ; Is it high?
mov Temp1, #RCP_MAX ; Yes - set RCP_MAX
Rcp_Int_First ; Set interrupt trig to first again
Rcp_Clear_Int_Flag ; Clear interrupt flag
clr Flags2.RCP_EDGE_NO ; Set first edge flag
Read_Rcp_Int ; Look once more at value of Rcp_In
jnb ACC.Rcp_In, ($+5) ; Is it high?
mov Temp2, #RCP_MAX ; Yes - set RCP_MAX
clr C
mov A, Temp1
subb A, Temp2 ; Compare the two readings of Rcp_In
jnz t2_int_pulses_absent ; Go back if they are not equal
t2_int_pulses_absent_no_max:
jnb Flags0.RCP_MEAS_PWM_FREQ, ($+6) ; Is measure RCP pwm frequency flag set?
mov Rcp_Timeout_Cntd, #RCP_TIMEOUT ; Yes - set timeout count to start value
jb Flags2.RCP_PPM, t2_int_ppm_timeout_set ; If flag is set (PPM) - branch
mov Rcp_Timeout_Cntd, #RCP_TIMEOUT ; For PWM, set timeout count to start value
t2_int_ppm_timeout_set:
mov New_Rcp, Temp1 ; Store new pulse length
setb Flags2.RCP_UPDATED ; Set updated flag
; Check if zero
mov A, Temp1 ; Load new pulse value
jz ($+5) ; Check if pulse is zero
mov Rcp_Stop_Cnt, #0 ; Reset rcp stop counter
t2_int_skip_start:
jb Flags2.RCP_PPM, t2_int_rcp_update_start ; If flag is set (PPM) - branch
; Check RC pulse skip counter
mov A, Rcp_Skip_Cntd
jz t2_int_skip_end ; If RC pulse skip count is zero - end skipping RC pulse detection
; Decrement skip counter (only if edge counter is zero)
dec Rcp_Skip_Cntd ; Decrement
ajmp t2_int_rcp_update_start
t2_int_skip_end:
; Skip counter has reached zero, start looking for RC pulses again
Rcp_Int_Enable ; Enable RC pulse interrupt
Rcp_Clear_Int_Flag ; Clear interrupt flag
t2_int_rcp_update_start:
; Process updated RC pulse
jb Flags2.RCP_UPDATED, ($+5) ; Is there an updated RC pulse available?
ajmp t2_int_current_pwm_update ; No - update pwm limits and exit
mov Temp1, New_Rcp ; Load new pulse value
jb Flags0.RCP_MEAS_PWM_FREQ, ($+5) ; If measure RCP pwm frequency flag set - do not clear flag
clr Flags2.RCP_UPDATED ; Flag that pulse has been evaluated
; Use a gain of 1.0625x for pwm input if not governor mode
jb Flags2.RCP_PPM, t2_int_pwm_min_run ; If flag is set (PPM) - branch
IF MODE == 0 ; Main - do not adjust gain
ajmp t2_int_pwm_min_run
ELSE
IF MODE == 2 ; Multi
mov Temp2, #Pgm_Gov_Mode ; Closed loop mode?
cjne @Temp2, #4, t2_int_pwm_min_run; Yes - branch
ENDIF
; Limit the maximum value to avoid wrap when scaled to pwm range
clr C
mov A, Temp1
subb A, #240 ; 240 = (255/1.0625) Needs to be updated according to multiplication factor below
jc t2_int_rcp_update_mult
mov A, #240 ; Set requested pwm to max
mov Temp1, A
t2_int_rcp_update_mult:
; Multiply by 1.0625 (optional adjustment gyro gain)
mov A, Temp1
swap A ; After this "0.0625"
anl A, #0Fh
add A, Temp1
mov Temp1, A
; Adjust tail gain
mov Temp2, #Pgm_Motor_Gain
cjne @Temp2, #3, ($+5) ; Is gain 1?
ajmp t2_int_pwm_min_run ; Yes - skip adjustment
clr C
rrc A ; After this "0.5"
clr C
rrc A ; After this "0.25"
mov Bit_Access_Int, @Temp2 ; (Temp2 has #Pgm_Motor_Gain)
jb Bit_Access_Int.0, t2_int_rcp_gain_corr ; Branch if bit 0 in gain is set
clr C
rrc A ; After this "0.125"
t2_int_rcp_gain_corr:
jb Bit_Access_Int.2, t2_int_rcp_gain_pos ; Branch if bit 2 in gain is set
clr C
xch A, Temp1
subb A, Temp1 ; Apply negative correction
mov Temp1, A
ajmp t2_int_pwm_min_run
t2_int_rcp_gain_pos:
add A, Temp1 ; Apply positive correction
mov Temp1, A
jnc t2_int_pwm_min_run ; Above max?
mov A, #0FFh ; Yes - limit
mov Temp1, A
ENDIF
t2_int_pwm_min_run:
IF MODE == 1 ; Tail - limit minimum pwm
; Limit minimum pwm
clr C
mov A, Temp1
subb A, Pwm_Motor_Idle ; Is requested pwm lower than minimum?
jnc t2_int_pwm_update ; No - branch
mov A, Pwm_Motor_Idle ; Yes - limit pwm to Pwm_Motor_Idle
mov Temp1, A
ENDIF
t2_int_pwm_update:
; Update requested_pwm
mov Requested_Pwm, Temp1 ; Set requested pwm
IF MODE >= 1 ; Tail or multi
; Boost pwm during direct start
mov A, Flags1
anl A, #((1 SHL STARTUP_PHASE)+(1 SHL INITIAL_RUN_PHASE))
jz t2_int_current_pwm_update
jb Flags1.MOTOR_STARTED, t2_int_current_pwm_update ; Do not boost when changing direction in bidirectional mode
mov A, Stall_Cnt ; Add an extra power boost for each attempt
clr C
rlc A
clr C
rlc A
mov Temp1, A
mov A, Pwm_Spoolup_Beg ; Set 25% of max startup power as minimum power
clr C
rrc A
clr C
rrc A
mov Temp2, A
clr C
subb A, Requested_Pwm
jc ($+4)
mov Requested_Pwm, Temp2
mov A, Temp1
add A, Requested_Pwm
mov Requested_Pwm, A
jnc ($+5)
mov Requested_Pwm, #0FFh
ENDIF
t2_int_current_pwm_update:
IF MODE == 0 OR MODE == 2 ; Main or multi
mov Temp1, #Pgm_Gov_Mode ; Governor mode?
cjne @Temp1, #4, t2_int_exit ; Yes - branch
ENDIF
mov Current_Pwm, Requested_Pwm ; Set equal as default
IF MODE >= 1 ; Tail or multi
; Set current_pwm_limited
mov Temp1, Current_Pwm ; Default not limited
clr C
mov A, Current_Pwm ; Check against limit
subb A, Pwm_Limit
jc ($+4) ; If current pwm below limit - branch
mov Temp1, Pwm_Limit ; Limit pwm
IF MODE == 2 ; Multi
; Limit pwm for low rpms
clr C
mov A, Temp1 ; Check against limit
subb A, Pwm_Limit_By_Rpm
jc ($+4) ; If current pwm below limit - branch
mov Temp1, Pwm_Limit_By_Rpm ; Limit pwm
ENDIF
mov Current_Pwm_Limited, Temp1
; Dither
mov A, Pwm_Dither_Decoded ; Load pwm dither
jnz ($+4) ; If active - branch
ajmp t2_int_current_pwm_no_dither
clr C
mov A, Temp1
mov Temp3, Pwm_Dither_Decoded
subb A, Temp3 ; Calculate pwm minus dither value
jnc t2_int_current_pwm_full_dither; If pwm more than dither value, then do full dither
mov A, Temp1 ; Set dither level to current pwm
mov Temp3, A
clr A ; Set pwm minus dither
t2_int_current_pwm_full_dither:
mov Temp2, A ; Load pwm minus dither value
mov A, Temp3 ; Load dither
clr C
rlc A ; Shift left once
mov Temp4, A
mov A, Random ; Load random number
cpl A ; Invert to create proper DC bias in random code
anl A, Temp4 ; And with double dither value
add A, Temp2 ; Add pwm minus dither
jc t2_int_current_pwm_dither_max_excess_power ; If dither cause power above max - branch and increase excess
add A, Pwm_Dither_Excess_Power ; Add excess power from previous cycles
mov Temp1, A
mov A, Pwm_Dither_Excess_Power ; Decrement excess power
jz ($+4)
dec Pwm_Dither_Excess_Power
jc t2_int_current_pwm_dither_max_power; If dither cause power above max - branch
ajmp t2_int_current_pwm_no_dither
t2_int_current_pwm_dither_max_excess_power:
inc Temp3 ; Add one to dither in order to always reach max power
clr C
mov A, Pwm_Dither_Excess_Power
subb A, Temp3 ; Limit excess power
jnc ($+4)
inc Pwm_Dither_Excess_Power
t2_int_current_pwm_dither_max_power:
mov Temp1, #255 ; Set power to max
t2_int_current_pwm_no_dither:
mov Current_Pwm_Lim_Dith, Temp1
IF DAMPED_MODE_ENABLE == 1
; Skip damping fet switching for high throttle
clr Flags1.SKIP_DAMP_ON
clr C
mov A, Current_Pwm_Lim_Dith
subb A, #248
jc t2_int_exit
setb Flags1.SKIP_DAMP_ON
ENDIF
ENDIF
t2_int_exit:
; Check if high byte flag is set
jb TF2H, t2h_int
pop ACC ; Restore preserved registers
pop PSW
orl EIE1, #10h ; Enable PCA0 interrupts
setb ET2 ; Enable timer2 interrupts
reti
t2h_int:
; High byte interrupt (happens every 32ms)
clr TF2H ; Clear interrupt flag
inc Timer2_X
IF MCU_48MHZ == 1
mov A, Clock_Set_At_48MHz
jz t2h_int_start
; Check skip variable
mov A, Skip_T2h_Int
jz t2h_int_start ; Execute this interrupt
mov Skip_T2h_Int, #0
ajmp t2h_int_exit
t2h_int_start:
mov Skip_T2h_Int, #1 ; Skip next interrupt
ENDIF
mov Temp1, #GOV_SPOOLRATE ; Load governor spool rate
; Check RC pulse timeout counter (used here for PPM only)
mov A, Rcp_Timeout_Cntd ; RC pulse timeout count zero?
jz t2h_int_rcp_stop_check ; Yes - do not decrement
; Decrement timeout counter (if PPM)
jnb Flags2.RCP_PPM, t2h_int_rcp_stop_check ; If flag is not set (PWM) - branch
dec Rcp_Timeout_Cntd ; No flag set (PPM) - decrement
t2h_int_rcp_stop_check:
; Check RC pulse against stop value
clr C
mov A, New_Rcp ; Load new pulse value
subb A, #RCP_STOP ; Check if pulse is below stop value
jc t2h_int_rcp_stop
; RC pulse higher than stop value, reset stop counter
mov Rcp_Stop_Cnt, #0 ; Reset rcp stop counter
ajmp t2h_int_rcp_gov_pwm
t2h_int_rcp_stop:
; RC pulse less than stop value
mov Auto_Bailout_Armed, #0 ; Disarm bailout
mov Spoolup_Limit_Cnt, #0
mov A, Rcp_Stop_Cnt ; Increment stop counter
add A, #1
mov Rcp_Stop_Cnt, A
jnc t2h_int_rcp_gov_pwm ; Branch if counter has not wrapped
mov Rcp_Stop_Cnt, #0FFh ; Set stop counter to max
t2h_int_rcp_gov_pwm:
IF MODE == 0 ; Main
; Update governor variables
mov Temp2, #Pgm_Gov_Mode ; Governor target by arm mode?
cjne @Temp2, #2, t2h_int_rcp_gov_by_setup ; No - branch
jnb Flags1.GOV_ACTIVE, t2h_int_rcp_gov_by_tx; If governor not active - branch (this ensures soft spoolup by tx)
clr C
mov A, Requested_Pwm
subb A, #50 ; Is requested pwm below 20%?
jc t2h_int_rcp_gov_by_tx ; Yes - branch (this enables a soft spooldown)
mov Requested_Pwm, Gov_Arm_Target ; Yes - load arm target
t2h_int_rcp_gov_by_setup:
mov Temp2, #Pgm_Gov_Mode ; Governor target by setup mode?
cjne @Temp2, #3, t2h_int_rcp_gov_by_tx ; No - branch
jnb Flags1.GOV_ACTIVE, t2h_int_rcp_gov_by_tx; If governor not active - branch (this ensures soft spoolup by tx)
clr C
mov A, Requested_Pwm
subb A, #50 ; Is requested pwm below 20%?
jc t2h_int_rcp_gov_by_tx ; Yes - branch (this enables a soft spooldown)
mov Temp2, #Pgm_Gov_Setup_Target ; Gov by setup - load setup target
mov Requested_Pwm, @Temp2
t2h_int_rcp_gov_by_tx:
clr C
mov A, Governor_Req_Pwm
subb A, Requested_Pwm ; Is governor requested pwm equal to requested pwm?
jz t2h_int_rcp_gov_pwm_done ; Yes - branch
jc t2h_int_rcp_gov_pwm_inc ; No - if lower, then increment
dec Governor_Req_Pwm ; No - if higher, then decrement
ajmp t2h_int_rcp_gov_pwm_done
t2h_int_rcp_gov_pwm_inc:
inc Governor_Req_Pwm ; Increment
t2h_int_rcp_gov_pwm_done:
djnz Temp1, t2h_int_rcp_gov_pwm ; If not number of steps processed - go back
inc Spoolup_Limit_Cnt ; Increment spoolup count
mov A, Spoolup_Limit_Cnt
jnz ($+4) ; Wrapped?
dec Spoolup_Limit_Cnt ; Yes - decrement
djnz Spoolup_Limit_Skip, t2h_int_exit ; Jump if skip count is not reached
mov Spoolup_Limit_Skip, #1 ; Reset skip count. Default is fast spoolup
mov Temp1, #8 ; Default fast increase for spoolup time of zero
mov A, Main_Spoolup_Time_3x
jz t2h_int_rcp_inc_limit ; Jump for spoolup time of zero
mov Temp1, #5 ; Default fast increase
clr C
mov A, Spoolup_Limit_Cnt
subb A, Main_Spoolup_Time_3x ; No spoolup until 3*N*32ms
jc t2h_int_exit
clr C
mov A, Spoolup_Limit_Cnt
subb A, Main_Spoolup_Time_10x ; Slow spoolup until "100"*N*32ms
jnc t2h_int_rcp_limit_middle_ramp
mov Temp1, #1 ; Slow initial spoolup
mov Spoolup_Limit_Skip, #3
jmp t2h_int_rcp_set_limit
t2h_int_rcp_limit_middle_ramp:
clr C
mov A, Spoolup_Limit_Cnt
subb A, Main_Spoolup_Time_15x ; Faster spoolup until "150"*N*32ms
jnc t2h_int_rcp_set_limit
mov Temp1, #1 ; Faster middle spoolup
mov Spoolup_Limit_Skip, #1
t2h_int_rcp_set_limit:
; Do not increment spoolup limit if higher pwm is not requested, unless governor is active
clr C
mov A, Pwm_Limit_Spoolup
subb A, Current_Pwm
jc t2h_int_rcp_inc_limit ; If Current_Pwm is larger than Pwm_Limit_Spoolup - branch
mov Temp2, #Pgm_Gov_Mode ; Governor mode?
cjne @Temp2, #4, ($+5)
ajmp t2h_int_rcp_bailout_arm ; No - branch
jb Flags1.GOV_ACTIVE, t2h_int_rcp_inc_limit ; If governor active - branch
mov Pwm_Limit_Spoolup, Current_Pwm ; Set limit to what current pwm is
mov A, Spoolup_Limit_Cnt ; Check if spoolup limit count is 255. If it is, then this is a "bailout" ramp
inc A
jz ($+5)
mov Spoolup_Limit_Cnt, Main_Spoolup_Time_3x ; Stay in an early part of the spoolup sequence (unless "bailout" ramp)
mov Spoolup_Limit_Skip, #1 ; Set skip count
mov Governor_Req_Pwm, #60 ; Set governor requested speed to ensure that it requests higher speed
; 20=Fail on jerk when governor activates
; 30=Ok
; 100=Fail on small governor settling overshoot on low headspeeds
; 200=Fail on governor settling overshoot
jmp t2h_int_exit ; Exit
t2h_int_rcp_inc_limit:
mov A, Pwm_Limit_Spoolup ; Increment spoolup pwm
add A, Temp1
jnc t2h_int_rcp_no_limit ; If below 255 - branch
mov Pwm_Limit_Spoolup, #0FFh
ajmp t2h_int_rcp_bailout_arm
t2h_int_rcp_no_limit:
mov Pwm_Limit_Spoolup, A
t2h_int_rcp_bailout_arm:
mov A, Pwm_Limit_Spoolup
inc A
jnz t2h_int_exit
mov Auto_Bailout_Armed, #255 ; Arm bailout
mov Spoolup_Limit_Cnt, #255
ENDIF
t2h_int_exit:
pop ACC ; Restore preserved registers
pop PSW
orl EIE1, #10h ; Enable PCA0 interrupts
setb ET2 ; Enable timer2 interrupts
reti
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Timer3 interrupt routine
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
t3_int: ; Used for commutation timing
clr EA ; Disable all interrupts
anl EIE1, #7Fh ; Disable timer3 interrupts
mov TMR3RLL, #0FAh ; Set a short delay before next interrupt
mov TMR3RLH, #0FFh
clr Flags0.T3_PENDING ; Flag that timer has wrapped
mov TMR3CN, #04h ; Timer3 enabled and interrupt flag cleared
setb EA ; Enable all interrupts
reti
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; PCA interrupt routine
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
pca_int: ; Used for RC pulse timing
clr EA
anl EIE1, #0EFh ; Disable PCA0 interrupts
clr ET2 ; Disable timer2 interrupts
push PSW ; Preserve registers through interrupt
push ACC
push B
setb PSW.3 ; Select register bank 1 for interrupt routines
setb EA
; Get the PCA counter values
Get_Rcp_Capture_Values
; Clear interrupt flag
Rcp_Clear_Int_Flag
; Check which edge it is
jnb Flags2.RCP_EDGE_NO, ($+5) ; Is it a first edge trig?
ajmp pca_int_second_meas_pwm_freq ; No - branch to second
Rcp_Int_Second ; Yes - set second edge trig
setb Flags2.RCP_EDGE_NO ; Set second edge flag
; Read RC signal level
Read_Rcp_Int
; Test RC signal level
jb ACC.Rcp_In, ($+5) ; Is it high?
ajmp pca_int_fail_minimum ; No - jump to fail minimum
; RC pulse was high, store RC pulse start timestamp
mov Rcp_Prev_Edge_L, Temp1
mov Rcp_Prev_Edge_H, Temp2
ajmp pca_int_exit ; Exit
pca_int_fail_minimum:
; Prepare for next interrupt
Rcp_Int_First ; Set interrupt trig to first again
Rcp_Clear_Int_Flag ; Clear interrupt flag
clr Flags2.RCP_EDGE_NO ; Set first edge flag
jnb Flags2.RCP_PPM, ($+5) ; If flag is not set (PWM) - branch
ajmp pca_int_set_timeout ; If PPM - ignore trig as noise
mov Temp1, #RCP_MIN ; Set RC pulse value to minimum
Read_Rcp_Int ; Test RC signal level again
jnb ACC.Rcp_In, ($+5) ; Is it high?
ajmp pca_int_set_timeout ; Yes - set new timeout and exit
mov New_Rcp, Temp1 ; Store new pulse length
ajmp pca_int_limited ; Set new RC pulse, new timeout and exit
pca_int_second_meas_pwm_freq:
; Prepare for next interrupt
Rcp_Int_First ; Set first edge trig
clr Flags2.RCP_EDGE_NO ; Set first edge flag
; Check if pwm frequency shall be measured
jb Flags0.RCP_MEAS_PWM_FREQ, ($+5) ; Is measure RCP pwm frequency flag set?
ajmp pca_int_fall ; No - skip measurements
; Set second edge trig only during pwm frequency measurement
Rcp_Int_Second ; Set second edge trig
Rcp_Clear_Int_Flag ; Clear interrupt flag
setb Flags2.RCP_EDGE_NO ; Set second edge flag
; Store edge data to RAM
mov Rcp_Edge_L, Temp1
mov Rcp_Edge_H, Temp2
; Calculate pwm frequency
clr C
mov A, Temp1
subb A, Rcp_PrePrev_Edge_L
mov Temp1, A
mov A, Temp2
subb A, Rcp_PrePrev_Edge_H
mov Temp2, A
mov Temp4, #0
mov Temp7, #8 ; Set default period tolerance requirement (MSB)
mov Temp3, #0 ; (LSB)
; Check if pulse is too short
clr C
mov A, Temp1
subb A, #low(140) ; If pulse below 70us, not accepted
mov A, Temp2
subb A, #high(140)
jnc pca_int_check_12kHz
mov Rcp_Period_Diff_Accepted, #0 ; Set not accepted
ajmp pca_int_store_data
pca_int_check_12kHz:
mov Bit_Access_Int, Temp1
mov Temp1, #Pgm_Enable_PWM_Input ; Check if PWM input is enabled
mov A, @Temp1
mov Temp1, Bit_Access_Int
jz pca_int_restore_edge ; If it is not - branch
; Check if pwm frequency is 12kHz
clr C
mov A, Temp1
subb A, #low(200) ; If below 100us, 12kHz pwm is assumed
mov A, Temp2
subb A, #high(200)
jnc pca_int_check_8kHz
clr A
setb ACC.RCP_PWM_FREQ_12KHZ
mov Temp4, A
mov Temp3, #10 ; Set period tolerance requirement (LSB)
ajmp pca_int_restore_edge_set_msb
pca_int_check_8kHz:
; Check if pwm frequency is 8kHz
clr C
mov A, Temp1
subb A, #low(360) ; If below 180us, 8kHz pwm is assumed
mov A, Temp2
subb A, #high(360)
jnc pca_int_check_4kHz
clr A
setb ACC.RCP_PWM_FREQ_8KHZ
mov Temp4, A
mov Temp3, #15 ; Set period tolerance requirement (LSB)
ajmp pca_int_restore_edge_set_msb
pca_int_check_4kHz:
; Check if pwm frequency is 4kHz
clr C
mov A, Temp1
subb A, #low(720) ; If below 360us, 4kHz pwm is assumed
mov A, Temp2
subb A, #high(720)
jnc pca_int_check_2kHz
clr A
setb ACC.RCP_PWM_FREQ_4KHZ
mov Temp4, A
mov Temp3, #30 ; Set period tolerance requirement (LSB)
ajmp pca_int_restore_edge_set_msb
pca_int_check_2kHz:
; Check if pwm frequency is 2kHz
clr C
mov A, Temp1
subb A, #low(1440) ; If below 720us, 2kHz pwm is assumed
mov A, Temp2
subb A, #high(1440)
jnc pca_int_check_1kHz
clr A
setb ACC.RCP_PWM_FREQ_2KHZ
mov Temp4, A
mov Temp3, #60 ; Set period tolerance requirement (LSB)
ajmp pca_int_restore_edge_set_msb
pca_int_check_1kHz:
; Check if pwm frequency is 1kHz
clr C
mov A, Temp1
subb A, #low(2200) ; If below 1100us, 1kHz pwm is assumed
mov A, Temp2
subb A, #high(2200)
jnc pca_int_restore_edge
clr A
setb ACC.RCP_PWM_FREQ_1KHZ
mov Temp4, A
mov Temp3, #120 ; Set period tolerance requirement (LSB)
pca_int_restore_edge_set_msb:
mov Temp7, #0 ; Set period tolerance requirement (MSB)
pca_int_restore_edge:
; Calculate difference between this period and previous period
clr C
mov A, Temp1
subb A, Rcp_Prev_Period_L
mov Temp5, A
mov A, Temp2
subb A, Rcp_Prev_Period_H
mov Temp6, A
; Make positive
jnb ACC.7, pca_int_check_diff
mov A, Temp5
cpl A
add A, #1
mov Temp5, A
mov A, Temp6
cpl A
addc A, #0
mov Temp6, A
pca_int_check_diff:
; Check difference
mov Rcp_Period_Diff_Accepted, #0 ; Set not accepted as default
clr C
mov A, Temp5
subb A, Temp3 ; Check difference
mov A, Temp6
subb A, Temp7
jnc pca_int_store_data
mov Rcp_Period_Diff_Accepted, #1 ; Set accepted
pca_int_store_data:
; Store previous period
mov Rcp_Prev_Period_L, Temp1
mov Rcp_Prev_Period_H, Temp2
; Store pre previous edge
mov Rcp_PrePrev_Edge_L, Rcp_Edge_L
mov Rcp_PrePrev_Edge_H, Rcp_Edge_H
mov Temp1, #RCP_VALIDATE
ajmp pca_int_limited
pca_int_fall:
; RC pulse edge was second, calculate new pulse length
clr C
mov A, Temp1
subb A, Rcp_Prev_Edge_L
mov Temp1, A
mov A, Temp2
subb A, Rcp_Prev_Edge_H
mov Temp2, A
jnb Flags3.RCP_PWM_FREQ_12KHZ, ($+5) ; Is RC input pwm frequency 12kHz?
ajmp pca_int_pwm_divide_done ; Yes - branch forward
jnb Flags3.RCP_PWM_FREQ_8KHZ, ($+5) ; Is RC input pwm frequency 8kHz?
ajmp pca_int_pwm_divide_done ; Yes - branch forward
jnb Flags3.RCP_PWM_FREQ_4KHZ, ($+5) ; Is RC input pwm frequency 4kHz?
ajmp pca_int_pwm_divide ; Yes - branch forward
jb Flags2.RCP_PPM_ONESHOT125, ($+5)
ajmp pca_int_fall_not_oneshot
mov A, Temp2 ; Oneshot125 - move to I_Temp5/6
mov Temp6, A
mov A, Temp1
mov Temp5, A
ajmp pca_int_fall_check_range
pca_int_fall_not_oneshot:
mov A, Temp2 ; No - 2kHz. Divide by 2
clr C
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
jnb Flags3.RCP_PWM_FREQ_2KHZ, ($+5) ; Is RC input pwm frequency 2kHz?
ajmp pca_int_pwm_divide ; Yes - branch forward
mov A, Temp2 ; No - 1kHz. Divide by 2 again
clr C
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
jnb Flags3.RCP_PWM_FREQ_1KHZ, ($+5) ; Is RC input pwm frequency 1kHz?
ajmp pca_int_pwm_divide ; Yes - branch forward
mov A, Temp2 ; No - PPM. Divide by 2 (to bring range to 256) and move to Temp5/6
clr C
rrc A
mov Temp6, A
mov A, Temp1
rrc A
mov Temp5, A
pca_int_fall_check_range:
; Skip range limitation if pwm frequency measurement
jb Flags0.RCP_MEAS_PWM_FREQ, pca_int_ppm_check_full_range
; Check if 2160us or above (in order to ignore false pulses)
clr C
mov A, Temp5 ; Is pulse 2160us or higher?
subb A, #28
mov A, Temp6
subb A, #2
jc ($+4) ; No - proceed
ajmp pca_int_ppm_outside_range ; Yes - ignore pulse
pca_int_ppm_below_full_range:
; Check if below 800us (in order to ignore false pulses)
mov A, Temp6
jnz pca_int_ppm_check_full_range
clr C
mov A, Temp5 ; Is pulse below 800us?
subb A, #200
jnc pca_int_ppm_check_full_range ; No - proceed
pca_int_ppm_outside_range:
inc Rcp_Outside_Range_Cnt
mov A, Rcp_Outside_Range_Cnt
jnz ($+4)
dec Rcp_Outside_Range_Cnt
clr C
mov A, Rcp_Outside_Range_Cnt
subb A, #10 ; Allow a given number of outside pulses
jnc ($+4)
ajmp pca_int_set_timeout ; If below limit - ignore pulse
mov New_Rcp, #0 ; Set pulse length to zero
setb Flags2.RCP_UPDATED ; Set updated flag
ajmp pca_int_set_timeout
pca_int_ppm_check_full_range:
; Decrement outside range counter
mov A, Rcp_Outside_Range_Cnt
jz ($+4)
dec Rcp_Outside_Range_Cnt
; Calculate "1000us" plus throttle minimum
IF MODE >= 1 ; Tail or multi
mov Temp1, #Pgm_Direction ; Check if bidirectional operation (store in Temp2)
mov A, @Temp1
mov Temp2, A
ENDIF
mov A, #0 ; Set 1000us as default minimum
jb Flags3.FULL_THROTTLE_RANGE, pca_int_ppm_calculate ; Check if full range is chosen
mov Temp1, #Pgm_Ppm_Min_Throttle ; Min throttle value is in 4us units
IF MODE >= 1 ; Tail or multi
cjne Temp2, #3, ($+5)
mov Temp1, #Pgm_Ppm_Center_Throttle ; Center throttle value is in 4us units
ENDIF
mov A, @Temp1
pca_int_ppm_calculate:
add A, #250 ; Add 1000us to minimum
mov Temp7, A
clr A
addc A, #0
mov Temp8, A
clr C
mov A, Temp5 ; Subtract minimum
subb A, Temp7
mov Temp5, A
mov A, Temp6
subb A, Temp8
mov Temp6, A
IF MODE >= 1 ; Tail or multi
mov Bit_Access_Int.0, C
cjne Temp2, #3, pca_int_ppm_bidir_dir_set; If not bidirectional operation - branch
mov C, Bit_Access_Int.0
jnc pca_int_ppm_bidir_fwd ; If result is positive - branch
jb Flags2.RCP_DIR_REV, pca_int_ppm_bidir_dir_set ; If same direction - branch
setb Flags2.RCP_DIR_REV
ajmp pca_int_ppm_bidir_dir_set
pca_int_ppm_bidir_fwd:
jnb Flags2.RCP_DIR_REV, pca_int_ppm_bidir_dir_set ; If same direction - branch
clr Flags2.RCP_DIR_REV
pca_int_ppm_bidir_dir_set:
mov C, Bit_Access_Int.0
ENDIF
jnc pca_int_ppm_neg_checked ; If result is positive - branch
IF MODE >= 1 ; Tail or multi
cjne Temp2, #3, pca_int_ppm_unidir_neg ; If not bidirectional operation - branch
mov A, Temp5 ; Change sign
cpl A
add A, #1
mov Temp5, A
mov A, Temp6
cpl A
addc A, #0
mov Temp6, A
jmp pca_int_ppm_neg_checked
pca_int_ppm_unidir_neg:
ENDIF
mov Temp1, #RCP_MIN ; Yes - set to minimum
mov Temp2, #0
ajmp pca_int_pwm_divide_done
pca_int_ppm_neg_checked:
IF MODE >= 1 ; Tail or multi
cjne Temp2, #3, pca_int_ppm_bidir_done ; If not bidirectional operation - branch
mov A, Temp5 ; Multiply value by 2
rlc A
mov Temp5, A
mov A, Temp6
rlc A
mov Temp6, A
clr C ; Subtract deadband
mov A, Temp5
subb A, #10
mov Temp5, A
mov A, Temp6
subb A, #0
mov Temp6, A
jnc pca_int_ppm_bidir_done
mov Temp5, #RCP_MIN
mov Temp6, #0
pca_int_ppm_bidir_done:
ENDIF
clr C ; Check that RC pulse is within legal range (max 255)
mov A, Temp5
subb A, #RCP_MAX
mov A, Temp6
subb A, #0
jc pca_int_ppm_max_checked
mov Temp1, #RCP_MAX
mov Temp2, #0
ajmp pca_int_pwm_divide_done
pca_int_ppm_max_checked:
mov A, Temp5 ; Multiply throttle value by gain
mov B, Ppm_Throttle_Gain
mul AB
xch A, B
mov C, B.7 ; Multiply result by 2 (unity gain is 128)
rlc A
mov Temp1, A ; Transfer to Temp1/2
mov Temp2, #0
jc pca_int_ppm_limit_after_mult
jmp pca_int_limited
pca_int_ppm_limit_after_mult:
mov Temp1, #RCP_MAX
mov Temp2, #0
jmp pca_int_limited
pca_int_pwm_divide:
mov A, Temp2 ; Divide by 2
clr C
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
pca_int_pwm_divide_done:
jnb Flags3.RCP_PWM_FREQ_12KHZ, pca_int_check_legal_range ; Is RC input pwm frequency 12kHz?
mov A, Temp2 ; Yes - check that value is not more than 255
jz ($+4)
mov Temp1, #RCP_MAX
clr C
mov A, Temp1 ; Multiply by 1.5
rrc A
addc A, Temp1
mov Temp1, A
clr A
addc A, #0
mov Temp2, A
pca_int_check_legal_range:
; Check that RC pulse is within legal range
clr C
mov A, Temp1
subb A, #RCP_MAX
mov A, Temp2
subb A, #0
jc pca_int_limited
mov Temp1, #RCP_MAX
pca_int_limited:
; RC pulse value accepted
mov New_Rcp, Temp1 ; Store new pulse length
setb Flags2.RCP_UPDATED ; Set updated flag
jb Flags0.RCP_MEAS_PWM_FREQ, ($+5) ; Is measure RCP pwm frequency flag set?
ajmp pca_int_set_timeout ; No - skip measurements
mov A, #((1 SHL RCP_PWM_FREQ_1KHZ)+(1 SHL RCP_PWM_FREQ_2KHZ)+(1 SHL RCP_PWM_FREQ_4KHZ)+(1 SHL RCP_PWM_FREQ_8KHZ)+(1 SHL RCP_PWM_FREQ_12KHZ))
cpl A
anl A, Flags3 ; Clear all pwm frequency flags
orl A, Temp4 ; Store pwm frequency value in flags
mov Flags3, A
clr Flags2.RCP_PPM ; Default, flag is not set (PWM)
mov A, Temp4 ; Check if all flags are cleared
jnz pca_int_set_timeout
setb Flags2.RCP_PPM ; Set flag (PPM)
pca_int_set_timeout:
mov Rcp_Timeout_Cntd, #RCP_TIMEOUT ; Set timeout count to start value
jnb Flags2.RCP_PPM, pca_int_ppm_timeout_set ; If flag is not set (PWM) - branch
mov Rcp_Timeout_Cntd, #RCP_TIMEOUT_PPM ; No flag set means PPM. Set timeout count
pca_int_ppm_timeout_set:
jnb Flags0.RCP_MEAS_PWM_FREQ, ($+5) ; Is measure RCP pwm frequency flag set?
ajmp pca_int_exit ; Yes - exit
jb Flags2.RCP_PPM, pca_int_exit ; If flag is set (PPM) - branch
Rcp_Int_Disable ; Disable RC pulse interrupt
pca_int_exit: ; Exit interrupt routine
jb Flags2.RCP_PPM, ($+6) ; If flag is set (PPP) - branch
mov Rcp_Skip_Cntd, #RCP_SKIP_RATE ; Load number of skips
pop B ; Restore preserved registers
pop ACC
pop PSW
setb ET2 ; Enable timer2 interrupts
orl EIE1, #10h ; Enable PCA0 interrupts
reti
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait xms ~(x*4*250) (Different entry points)
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait1ms:
mov Temp2, #1
jmp waitxms_o
wait3ms:
mov Temp2, #3
jmp waitxms_o
wait10ms:
mov Temp2, #10
jmp waitxms_o
wait30ms:
mov Temp2, #30
jmp waitxms_o
wait100ms:
mov Temp2, #100
jmp waitxms_o
wait200ms:
mov Temp2, #200
jmp waitxms_o
waitxms_o: ; Outer loop
mov Temp1, #23
waitxms_m: ; Middle loop
clr A
djnz ACC, $ ; Inner loop (42.7us - 1024 cycles)
djnz Temp1, waitxms_m
djnz Temp2, waitxms_o
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Beeper routines (4 different entry points)
;
; No assumptions
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
beep_f1: ; Entry point 1, load beeper frequency 1 settings
mov Temp3, #20 ; Off wait loop length
mov Temp4, #120 ; Number of beep pulses
jmp beep
beep_f2: ; Entry point 2, load beeper frequency 2 settings
mov Temp3, #16
mov Temp4, #140
jmp beep
beep_f3: ; Entry point 3, load beeper frequency 3 settings
mov Temp3, #13
mov Temp4, #180
jmp beep
beep_f4: ; Entry point 4, load beeper frequency 4 settings
mov Temp3, #11
mov Temp4, #200
jmp beep
beep: ; Beep loop start
mov A, Beep_Strength
djnz ACC, beep_start
ret
beep_start:
mov Temp2, #2
beep_onoff:
clr A
BpFET_off ; BpFET off
djnz ACC, $ ; Allow some time after pfet is turned off
BnFET_on ; BnFET on (in order to charge the driver of the BpFET)
djnz ACC, $ ; Let the nfet be turned on a while
BnFET_off ; BnFET off again
djnz ACC, $ ; Allow some time after nfet is turned off
BpFET_on ; BpFET on
djnz ACC, $ ; Allow some time after pfet is turned on
; Turn on nfet
mov A, Temp2
jb ACC.0, beep_anfet_on
AnFET_on ; AnFET on
beep_anfet_on:
jnb ACC.0, beep_cnfet_on
CnFET_on ; CnFET on
beep_cnfet_on:
mov A, Beep_Strength
djnz ACC, $
; Turn off nfet
mov A, Temp2
jb ACC.0, beep_anfet_off
AnFET_off ; AnFET off
beep_anfet_off:
jnb ACC.0, beep_cnfet_off
CnFET_off ; CnFET off
beep_cnfet_off:
mov A, #150 ; 25µs off
djnz ACC, $
djnz Temp2, beep_onoff
; Copy variable
mov A, Temp3
mov Temp1, A
beep_off: ; Fets off loop
djnz ACC, $
djnz Temp1, beep_off
djnz Temp4, beep
BpFET_off ; BpFET off
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Division 16bit unsigned by 16bit unsigned
;
; Dividend shall be in Temp2/Temp1, divisor in Temp4/Temp3
; Result will be in Temp2/Temp1
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
div_u16_by_u16:
clr C
mov Temp5, #0
mov Temp6, #0
mov B, #0
div_u16_by_u16_div1:
inc B ; Increment counter for each left shift
mov A, Temp3 ; Shift left the divisor
rlc A
mov Temp3, A
mov A, Temp4
rlc A
mov Temp4, A
jnc div_u16_by_u16_div1 ; Repeat until carry flag is set from high-byte
div_u16_by_u16_div2:
mov A, Temp4 ; Shift right the divisor
rrc A
mov Temp4, A
mov A, Temp3
rrc A
mov Temp3, A
clr C
mov A, Temp2 ; Make a safe copy of the dividend
mov Temp8, A
mov A, Temp1
mov Temp7, A
mov A, Temp1 ; Move low-byte of dividend into accumulator
subb A, Temp3 ; Dividend - shifted divisor = result bit (no factor, only 0 or 1)
mov Temp1, A ; Save updated dividend
mov A, Temp2 ; Move high-byte of dividend into accumulator
subb A, Temp4 ; Subtract high-byte of divisor (all together 16-bit substraction)
mov Temp2, A ; Save updated high-byte back in high-byte of divisor
jnc div_u16_by_u16_div3 ; If carry flag is NOT set, result is 1
mov A, Temp8 ; Otherwise result is 0, save copy of divisor to undo subtraction
mov Temp2, A
mov A, Temp7
mov Temp1, A
div_u16_by_u16_div3:
cpl C ; Invert carry, so it can be directly copied into result
mov A, Temp5
rlc A ; Shift carry flag into temporary result
mov Temp5, A
mov A, Temp6
rlc A
mov Temp6,A
djnz B, div_u16_by_u16_div2 ;Now count backwards and repeat until "B" is zero
mov A, Temp6 ; Move result to Temp2/Temp1
mov Temp2, A
mov A, Temp5
mov Temp1, A
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Multiplication 16bit signed by 8bit unsigned
;
; Multiplicand shall be in Temp2/Temp1, multiplicator in Temp3
; Result will be in Temp2/Temp1. Result will divided by 16
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
mult_s16_by_u8_div_16:
mov A, Temp1 ; Read input to math registers
mov B, Temp2
mov Bit_Access, Temp3
setb PSW.4 ; Select register bank 2 for math routines
mov Temp1, A ; Store in math registers
mov Temp2, B
mov Temp4, #0 ; Set sign in Temp4 and test sign
jnb B.7, mult_s16_by_u8_positive
mov Temp4, #0FFh
cpl A
add A, #1
mov Temp1, A
mov A, Temp2
cpl A
addc A, #0
mov Temp2, A
mult_s16_by_u8_positive:
mov A, Temp1 ; Multiply LSB with multiplicator
mov B, Bit_Access
mul AB
mov Temp6, B ; Place MSB in Temp6
mov Temp1, A ; Place LSB in Temp1 (result)
mov A, Temp2 ; Multiply MSB with multiplicator
mov B, Bit_Access
mul AB
mov Temp8, B ; Place in Temp8/7
mov Temp7, A
mov A, Temp6 ; Add up
add A, Temp7
mov Temp2, A
mov A, #0
addc A, Temp8
mov Temp3, A
mov Temp5, #4 ; Set number of divisions
mult_s16_by_u8_div_loop:
clr C ; Rotate right
mov A, Temp3
rrc A
mov Temp3, A
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
djnz Temp5, mult_s16_by_u8_div_loop
mov B, Temp4 ; Test sign
jnb B.7, mult_s16_by_u8_exit
mov A, Temp1
cpl A
add A, #1
mov Temp1, A
mov A, Temp2
cpl A
addc A, #0
mov Temp2, A
mult_s16_by_u8_exit:
mov A, Temp1 ; Store output
mov B, Temp2
clr PSW.4 ; Select normal register bank
mov Temp1, A
mov Temp2, B
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Calculate governor routines
;
; No assumptions
;
; Governs headspeed based upon the Comm_Period4x variable and pwm
; The governor task is split into several routines in order to distribute processing time
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
; First governor routine - calculate governor target
IF MODE == 0 ; Main
calc_governor_target:
mov Temp1, #Pgm_Gov_Mode ; Governor mode?
cjne @Temp1, #4, governor_speed_check ; Yes
jmp calc_governor_target_exit ; No
governor_speed_check:
; Stop governor for stop RC pulse
clr C
mov A, New_Rcp ; Check RC pulse against stop value
subb A, #(RCP_MAX/10) ; Is pulse below stop value?
jc governor_deactivate ; Yes - deactivate
mov A, Flags1
anl A, #((1 SHL STARTUP_PHASE)+(1 SHL INITIAL_RUN_PHASE))
jnz governor_deactivate ; Deactivate if any startup phase set
; Skip speed check if governor is already active
jb Flags1.GOV_ACTIVE, governor_target_calc
; Check speed (do not run governor for low speeds)
mov Temp1, #05h ; Default high range activation limit value (~62500 eRPM)
mov Temp2, #Pgm_Gov_Range
mov A, @Temp2 ; Check if high range (Temp2 has #Pgm_Gov_Range)
dec A
jz governor_act_lim_set ; If high range - branch
mov Temp1, #0Ah ; Middle range activation limit value (~31250 eRPM)
dec A
jz governor_act_lim_set ; If middle range - branch
mov Temp1, #12h ; Low range activation limit value (~17400 eRPM)
governor_act_lim_set:
clr C
mov A, Comm_Period4x_H
subb A, Temp1
jc governor_activate ; If speed above min limit - run governor
governor_deactivate:
jnb Flags1.GOV_ACTIVE, governor_first_deactivate_done; This code is executed continuously. Only execute the code below the first time
mov Pwm_Limit_Spoolup, Pwm_Spoolup_Beg
mov Spoolup_Limit_Cnt, #255
mov Spoolup_Limit_Skip, #1
governor_first_deactivate_done:
mov Current_Pwm, Requested_Pwm ; Set current pwm to requested
clr A
mov Gov_Target_L, A ; Set target to zero
mov Gov_Target_H, A
mov Gov_Integral_L, A ; Set integral to zero
mov Gov_Integral_H, A
mov Gov_Integral_X, A
clr Flags1.GOV_ACTIVE
jmp calc_governor_target_exit
governor_activate:
setb Flags1.GOV_ACTIVE
governor_target_calc:
; Governor calculations
mov Temp2, #Pgm_Gov_Range
mov A, @Temp2 ; Check high, middle or low range
dec A
jnz calc_governor_target_middle
mov A, Governor_Req_Pwm ; Load governor requested pwm
cpl A ; Calculate 255-pwm (invert pwm)
; Calculate comm period target (1 + 2*((255-Requested_Pwm)/256) - 0.25)
rlc A ; Msb to carry
rlc A ; To bit0
mov Temp2, A ; Now 1 lsb is valid for H
rrc A
mov Temp1, A ; Now 7 msbs are valid for L
mov A, Temp2
anl A, #01h ; Calculate H byte
inc A ; Add 1
mov Temp2, A
mov A, Temp1
anl A, #0FEh ; Calculate L byte
jmp calc_governor_subtract_025
calc_governor_target_middle:
mov A, @Temp2 ; Check middle or low range (Temp2 has #Pgm_Gov_Range)
dec A
dec A
jnz calc_governor_target_low
mov A, Governor_Req_Pwm ; Load governor requested pwm
cpl A ; Calculate 255-pwm (invert pwm)
; Calculate comm period target (1 + 4*((255-Requested_Pwm)/256))
rlc A ; Msb to carry
rlc A ; To bit0
rlc A ; To bit1
mov Temp2, A ; Now 2 lsbs are valid for H
rrc A
mov Temp1, A ; Now 6 msbs are valid for L
mov A, Temp2
anl A, #03h ; Calculate H byte
inc A ; Add 1
mov Temp2, A
mov A, Temp1
anl A, #0FCh ; Calculate L byte
jmp calc_governor_store_target
calc_governor_target_low:
mov A, Governor_Req_Pwm ; Load governor requested pwm
cpl A ; Calculate 255-pwm (invert pwm)
; Calculate comm period target (2 + 8*((255-Requested_Pwm)/256) - 0.25)
rlc A ; Msb to carry
rlc A ; To bit0
rlc A ; To bit1
rlc A ; To bit2
mov Temp2, A ; Now 3 lsbs are valid for H
rrc A
mov Temp1, A ; Now 5 msbs are valid for L
mov A, Temp2
anl A, #07h ; Calculate H byte
inc A ; Add 1
inc A ; Add 1 more
mov Temp2, A
mov A, Temp1
anl A, #0F8h ; Calculate L byte
calc_governor_subtract_025:
clr C
subb A, #40h ; Subtract 0.25
mov Temp1, A
mov A, Temp2
subb A, #0
mov Temp2, A
calc_governor_store_target:
; Store governor target
mov Gov_Target_L, Temp1
mov Gov_Target_H, Temp2
calc_governor_target_exit:
ret
ENDIF
IF MODE == 1 ; Tail
calc_governor_target:
ret
ENDIF
IF MODE == 2 ; Multi
calc_governor_target:
mov Temp1, #Pgm_Gov_Mode ; Closed loop mode?
cjne @Temp1, #4, governor_target_calc ; Yes - branch
jmp calc_governor_target_exit ; No
governor_target_calc:
; Stop governor for stop RC pulse
clr C
mov A, New_Rcp ; Check RC pulse against stop value
subb A, #RCP_STOP ; Is pulse below stop value?
jc governor_deactivate ; Yes - deactivate
jmp governor_activate ; No - activate
governor_deactivate:
mov Current_Pwm, Requested_Pwm ; Set current pwm to requested
clr A
mov Gov_Target_L, A ; Set target to zero
mov Gov_Target_H, A
mov Gov_Integral_L, A ; Set integral to zero
mov Gov_Integral_H, A
mov Gov_Integral_X, A
clr Flags1.GOV_ACTIVE
jmp calc_governor_target_exit
governor_activate:
mov Temp1, #Pgm_Gov_Mode ; Store gov mode
mov A, @Temp1
mov Temp5, A
setb Flags1.GOV_ACTIVE
mov A, Requested_Pwm ; Load requested pwm
mov Governor_Req_Pwm, A ; Set governor requested pwm
; Calculate comm period target 2*(51000/Requested_Pwm)
mov Temp1, #38h ; Load 51000
mov Temp2, #0C7h
mov Temp3, Comm_Period4x_L ; Load comm period
mov Temp4, Comm_Period4x_H
; Set speed range
clr C
mov A, Temp4
rrc A
mov Temp4, A
mov A, Temp3
rrc A
mov Temp3, A ; 200k eRPM range here
; Check range
mov A, Temp5
dec A
jz governor_activate_range_set ; 200k eRPM? - branch
governor_activate_100k:
clr C
mov A, Temp4
rrc A
mov Temp4, A
mov A, Temp3
rrc A
mov Temp3, A ; 100k eRPM range here
mov A, Temp5 ; Check range again
dec A
dec A
jz governor_activate_range_set ; 100k eRPM? - branch
governor_activate_50k:
clr C
mov A, Temp4
rrc A
mov Temp4, A
mov A, Temp3
rrc A
mov Temp3, A ; 50k eRPM range here
governor_activate_range_set:
call div_u16_by_u16
; Store governor target
mov Gov_Target_L, Temp1
mov Gov_Target_H, Temp2
calc_governor_target_exit:
ret
ENDIF
; Second governor routine - calculate governor proportional error
calc_governor_prop_error:
IF MODE <= 1 ; Main or tail
; Load comm period and divide by 2
clr C
mov A, Comm_Period4x_H
rrc A
mov Temp2, A
mov A, Comm_Period4x_L
rrc A
mov Temp1, A
; Calculate error
clr C
mov A, Gov_Target_L
subb A, Temp1
mov Temp1, A
mov A, Gov_Target_H
subb A, Temp2
mov Temp2, A
ENDIF
IF MODE == 2 ; Multi
; Calculate error
clr C
mov A, Gov_Target_L
subb A, Governor_Req_Pwm
mov Temp1, A
mov A, Gov_Target_H
subb A, #0
mov Temp2, A
ENDIF
; Check error and limit
jnc governor_check_prop_limit_pos ; Check carry
clr C
mov A, Temp1
subb A, #80h ; Is error too negative?
mov A, Temp2
subb A, #0FFh
jc governor_limit_prop_error_neg ; Yes - limit
jmp governor_store_prop_error
governor_check_prop_limit_pos:
clr C
mov A, Temp1
subb A, #7Fh ; Is error too positive?
mov A, Temp2
subb A, #00h
jnc governor_limit_prop_error_pos ; Yes - limit
jmp governor_store_prop_error
governor_limit_prop_error_pos:
mov Temp1, #7Fh ; Limit to max positive (2's complement)
mov Temp2, #00h
jmp governor_store_prop_error
governor_limit_prop_error_neg:
mov Temp1, #80h ; Limit to max negative (2's complement)
mov Temp2, #0FFh
governor_store_prop_error:
; Store proportional
mov Gov_Proportional_L, Temp1
mov Gov_Proportional_H, Temp2
calc_governor_prop_error_exit:
ret
; Third governor routine - calculate governor integral error
calc_governor_int_error:
; Add proportional to integral
mov A, Gov_Proportional_L
add A, Gov_Integral_L
mov Temp1, A
mov A, Gov_Proportional_H
addc A, Gov_Integral_H
mov Temp2, A
mov Bit_Access, Gov_Proportional_H ; Sign extend high byte
clr A
jnb Bit_Access.7, ($+4)
cpl A
addc A, Gov_Integral_X
mov Temp3, A
; Check integral and limit
jnb ACC.7, governor_check_int_limit_pos ; Check sign bit
clr C
mov A, Temp3
subb A, #0F0h ; Is error too negative?
jc governor_limit_int_error_neg ; Yes - limit
jmp governor_check_pwm
governor_check_int_limit_pos:
clr C
mov A, Temp3
subb A, #0Fh ; Is error too positive?
jnc governor_limit_int_error_pos ; Yes - limit
jmp governor_check_pwm
governor_limit_int_error_pos:
mov Temp1, #0FFh ; Limit to max positive (2's complement)
mov Temp2, #0FFh
mov Temp3, #0Fh
jmp governor_check_pwm
governor_limit_int_error_neg:
mov Temp1, #00h ; Limit to max negative (2's complement)
mov Temp2, #00h
mov Temp3, #0F0h
governor_check_pwm:
; Check current pwm
clr C
mov A, Current_Pwm
subb A, Pwm_Limit ; Is current pwm at or above pwm limit?
jnc governor_int_max_pwm ; Yes - branch
clr C
mov A, #1
subb A, Current_Pwm ; Is current pwm at minimum?
jnc governor_int_min_pwm ; Yes - branch
jmp governor_store_int_error ; No - store integral error
governor_int_max_pwm:
mov A, Gov_Proportional_H
jb ACC.7, calc_governor_int_error_exit ; Is proportional error negative - branch (high byte is always zero)
jmp governor_store_int_error ; Positive - store integral error
governor_int_min_pwm:
mov A, Gov_Proportional_H
jnb ACC.7, calc_governor_int_error_exit ; Is proportional error positive - branch (high byte is always zero)
governor_store_int_error:
; Store integral
mov Gov_Integral_L, Temp1
mov Gov_Integral_H, Temp2
mov Gov_Integral_X, Temp3
calc_governor_int_error_exit:
ret
; Fourth governor routine - calculate governor proportional correction
calc_governor_prop_correction:
; Load proportional gain
mov Temp1, #Pgm_Gov_P_Gain_Decoded; Load proportional gain
mov A, @Temp1
mov Temp3, A ; Store in Temp3
; Load proportional
clr C
mov A, Gov_Proportional_L ; Nominal multiply by 2
rlc A
mov Temp1, A
mov A, Gov_Proportional_H
rlc A
mov Temp2, A
; Apply gain
call mult_s16_by_u8_div_16
; Check error and limit (to low byte)
mov A, Temp2
jnb ACC.7, governor_check_prop_corr_limit_pos ; Check sign bit
clr C
mov A, Temp1
subb A, #80h ; Is error too negative?
mov A, Temp2
subb A, #0FFh
jc governor_limit_prop_corr_neg ; Yes - limit
ajmp governor_apply_prop_corr
governor_check_prop_corr_limit_pos:
clr C
mov A, Temp1
subb A, #7Fh ; Is error too positive?
mov A, Temp2
subb A, #00h
jnc governor_limit_prop_corr_pos ; Yes - limit
ajmp governor_apply_prop_corr
governor_limit_prop_corr_pos:
mov Temp1, #7Fh ; Limit to max positive (2's complement)
mov Temp2, #00h
ajmp governor_apply_prop_corr
governor_limit_prop_corr_neg:
mov Temp1, #80h ; Limit to max negative (2's complement)
mov Temp2, #0FFh
governor_apply_prop_corr:
; Test proportional sign
mov A, Temp1
jb ACC.7, governor_corr_neg_prop ; If proportional negative - go to correct negative
; Subtract positive proportional
clr C
mov A, Governor_Req_Pwm
subb A, Temp1
mov Temp1, A
; Check result
jc governor_corr_prop_min_pwm ; Is result negative?
clr C
mov A, Temp1 ; Is result below pwm min?
subb A, #1
jc governor_corr_prop_min_pwm ; Yes
jmp governor_store_prop_corr ; No - store proportional correction
governor_corr_prop_min_pwm:
mov Temp1, #1 ; Load minimum pwm
jmp governor_store_prop_corr
governor_corr_neg_prop:
; Add negative proportional
mov A, Temp1
cpl A
add A, #1
add A, Governor_Req_Pwm
mov Temp1, A
; Check result
jc governor_corr_prop_max_pwm ; Is result above max?
jmp governor_store_prop_corr ; No - store proportional correction
governor_corr_prop_max_pwm:
mov Temp1, #255 ; Load maximum pwm
governor_store_prop_corr:
; Store proportional pwm
mov Gov_Prop_Pwm, Temp1
calc_governor_prop_corr_exit:
ret
; Fifth governor routine - calculate governor integral correction
calc_governor_int_correction:
; Load integral gain
mov Temp1, #Pgm_Gov_I_Gain_Decoded; Load integral gain
mov A, @Temp1
mov Temp3, A ; Store in Temp3
; Load integral
mov Temp1, Gov_Integral_H
mov Temp2, Gov_Integral_X
; Apply gain
call mult_s16_by_u8_div_16
; Check integral and limit
mov A, Temp2
jnb ACC.7, governor_check_int_corr_limit_pos ; Check sign bit
clr C
mov A, Temp1
subb A, #01h ; Is integral too negative?
mov A, Temp2
subb A, #0FFh
jc governor_limit_int_corr_neg ; Yes - limit
jmp governor_apply_int_corr
governor_check_int_corr_limit_pos:
clr C
mov A, Temp1
subb A, #0FFh ; Is integral too positive?
mov A, Temp2
subb A, #00h
jnc governor_limit_int_corr_pos ; Yes - limit
jmp governor_apply_int_corr
governor_limit_int_corr_pos:
mov Temp1, #0FFh ; Limit to max positive (2's complement)
mov Temp2, #00h
jmp governor_apply_int_corr
governor_limit_int_corr_neg:
mov Temp1, #01h ; Limit to max negative (2's complement)
mov Temp2, #0FFh
governor_apply_int_corr:
; Test integral sign
mov A, Temp2
jb ACC.7, governor_corr_neg_int ; If integral negative - go to correct negative
; Subtract positive integral
clr C
mov A, Gov_Prop_Pwm
subb A, Temp1
mov Temp1, A
; Check result
jc governor_corr_int_min_pwm ; Is result negative?
clr C
mov A, Temp1 ; Is result below pwm min?
subb A, #1
jc governor_corr_int_min_pwm ; Yes
jmp governor_store_int_corr ; No - store correction
governor_corr_int_min_pwm:
mov Temp1, #1 ; Load minimum pwm
jmp governor_store_int_corr
governor_corr_neg_int:
; Add negative integral
mov A, Temp1
cpl A
add A, #1
add A, Gov_Prop_Pwm
mov Temp1, A
; Check result
jc governor_corr_int_max_pwm ; Is result above max?
jmp governor_store_int_corr ; No - store correction
governor_corr_int_max_pwm:
mov Temp1, #255 ; Load maximum pwm
governor_store_int_corr:
; Store current pwm
mov Current_Pwm, Temp1
calc_governor_int_corr_exit:
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Set pwm limit low rpm
;
; No assumptions
;
; Sets power limit for low rpms and disables demag for low rpms
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
set_pwm_limit_low_rpm:
; Set pwm limit and demag disable for low rpms
mov Temp1, #0FFh ; Default full power
jb Flags1.STARTUP_PHASE, set_pwm_limit_low_rpm_exit ; Exit if startup phase set
mov Temp2, #Pgm_Enable_Power_Prot ; Check if low RPM power protection is enabled
mov A, @Temp2
jz set_pwm_limit_low_rpm_exit ; Exit if disabled
mov A, Comm_Period4x_H
jz set_pwm_limit_low_rpm_exit ; Avoid divide by zero
mov A, #255 ; Divide 255 by Comm_Period4x_H
mov B, Comm_Period4x_H
div AB
mov B, Low_Rpm_Pwr_Slope ; Multiply by slope
jnb Flags1.INITIAL_RUN_PHASE, ($+6) ; More protection for initial run phase
mov B, #5
mul AB
mov Temp1, A ; Set new limit
xch A, B
jz ($+4) ; Limit to max
mov Temp1, #0FFh
clr C
mov A, Temp1 ; Limit to min
subb A, Pwm_Spoolup_Beg
jnc set_pwm_limit_low_rpm_exit
mov Temp1, Pwm_Spoolup_Beg
set_pwm_limit_low_rpm_exit:
mov Pwm_Limit_By_Rpm, Temp1
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Set pwm limit high rpm
;
; No assumptions
;
; Sets power limit for high rpms
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
set_pwm_limit_high_rpm:
IF MCU_48MHZ == 1
clr C
mov A, Comm_Period4x_L
subb A, #0C8h ; Limit Comm_Period to 200, which is 400k erpm
mov A, Comm_Period4x_H
subb A, #00h
ELSE
clr C
mov A, Comm_Period4x_L
subb A, #40h ; Limit Comm_Period to 320, which is 250k erpm
mov A, Comm_Period4x_H
subb A, #01h
ENDIF
mov A, Pwm_Limit_By_Rpm
jnc set_pwm_limit_high_rpm_inc_limit
dec A
ajmp set_pwm_limit_high_rpm_store
set_pwm_limit_high_rpm_inc_limit:
inc A
set_pwm_limit_high_rpm_store:
jz ($+4)
mov Pwm_Limit_By_Rpm, A
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Measure lipo cells
;
; No assumptions
;
; Measure voltage and calculate lipo cells
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
measure_lipo_cells:
IF MODE >= 1 ; Tail or multi
; If not supported, then exit
jmp measure_lipo_exit
ENDIF
IF MODE == 0 ; Main
; Load programmed low voltage limit
mov Temp1, #Pgm_Low_Voltage_Lim ; Load limit
mov A, @Temp1
mov Bit_Access, A ; Store in Bit_Access
; Set commutation to BpFET on
call comm5comm6
; Start adc
Start_Adc
; Wait for ADC reference to settle, and then start again
call wait1ms
Start_Adc
; Wait for ADC conversion to complete
measure_lipo_wait_adc:
jnb AD0INT, measure_lipo_wait_adc
; Read ADC result
Read_Adc_Result
; Stop ADC
Stop_Adc
; Switch power off
call switch_power_off
; Set limit step
mov Lipo_Adc_Limit_L, #ADC_LIMIT_L
mov Lipo_Adc_Limit_H, #ADC_LIMIT_H
clr C
mov A, #ADC_LIMIT_H ; Divide 3.0V value by 2
rrc A
mov Temp6, A
mov A, #ADC_LIMIT_L
jz measure_lipo_exit ; Exit if disabled
rrc A
mov Temp5, A
mov A, #ADC_LIMIT_L ; Calculate 1.5*3.0V=4.5V value
add A, Temp5
mov Temp5, A
mov A, #ADC_LIMIT_H
addc A, Temp6
mov Temp6, A
mov A, Temp5 ; Copy step
mov Temp3, A
mov A, Temp6
mov Temp4, A
measure_lipo_cell_loop:
; Check voltage against xS lower limit
clr C
mov A, Temp1
subb A, Temp3 ; Voltage above limit?
mov A, Temp2
subb A, Temp4
jc measure_lipo_adjust ; No - branch
; Set xS voltage limit
mov A, Lipo_Adc_Limit_L
add A, #ADC_LIMIT_L
mov Lipo_Adc_Limit_L, A
mov A, Lipo_Adc_Limit_H
addc A, #ADC_LIMIT_H
mov Lipo_Adc_Limit_H, A
; Set (x+1)S lower limit
mov A, Temp3
add A, Temp5 ; Add step
mov Temp3, A
mov A, Temp4
addc A, Temp6
mov Temp4, A
jmp measure_lipo_cell_loop ; Check for one more battery cell
measure_lipo_adjust:
mov Temp7, Lipo_Adc_Limit_L
mov Temp8, Lipo_Adc_Limit_H
; Calculate 3.125%
clr C
mov A, Lipo_Adc_Limit_H
rrc A
mov Temp2, A
mov A, Lipo_Adc_Limit_L
rrc A
mov Temp1, A ; After this 50%
clr C
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A ; After this 25%
; Divide three times to get to 3.125%
mov Temp3, #3
measure_lipo_divide_loop:
clr C
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
djnz Temp3, measure_lipo_divide_loop
; Add the programmed number of 0.1V (or 3.125% increments)
mov Temp3, Bit_Access ; Load programmed limit (Bit_Access has Pgm_Low_Voltage_Lim)
dec Temp3
jnz measure_lipo_limit_on ; Is low voltage limiting on?
mov Lipo_Adc_Limit_L, #0 ; No - set limit to zero
mov Lipo_Adc_Limit_H, #0
jmp measure_lipo_exit
measure_lipo_limit_on:
dec Temp3
mov A, Temp3
jz measure_lipo_update
measure_lipo_add_loop:
mov A, Temp7 ; Add 3.125%
add A, Temp1
mov Temp7, A
mov A, Temp8
addc A, Temp2
mov Temp8, A
djnz Temp3, measure_lipo_add_loop
measure_lipo_update:
; Set ADC limit
mov Lipo_Adc_Limit_L, Temp7
mov Lipo_Adc_Limit_H, Temp8
ENDIF
measure_lipo_exit:
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Start ADC conversion
;
; No assumptions
;
; Start conversion used for measuring power supply voltage
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
start_adc_conversion:
; Start adc
Start_Adc
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Check temperature, power supply voltage and limit power
;
; No assumptions
;
; Used to limit main motor power in order to maintain the required voltage
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
check_temp_voltage_and_limit_power:
; Load programmed low voltage limit
mov Temp1, #Pgm_Low_Voltage_Lim
mov A, @Temp1
mov Temp8, A ; Store in Temp8
; Wait for ADC conversion to complete
jnb AD0INT, check_temp_voltage_and_limit_power
; Read ADC result
Read_Adc_Result
; Stop ADC
Stop_Adc
inc Adc_Conversion_Cnt ; Increment conversion counter
clr C
mov A, Adc_Conversion_Cnt ; Is conversion count equal to temp rate?
subb A, #TEMP_CHECK_RATE
jc check_voltage_start ; No - check voltage
mov Adc_Conversion_Cnt, #0 ; Yes - temperature check. Reset counter
mov A, Temp2 ; Move ADC MSB to Temp3
mov Temp3, A
mov Temp2, #Pgm_Enable_Temp_Prot ; Is temp protection enabled?
mov A, @Temp2
jz temp_check_exit ; No - branch
mov A, Temp3 ; Is temperature reading below 256?
jnz temp_average_inc_dec ; No - proceed
mov A, Current_Average_Temp ; Yes - decrement average
jz temp_average_updated ; Already zero - no change
jmp temp_average_dec ; Decrement
temp_average_inc_dec:
clr C
mov A, Temp1 ; Check if current temperature is above or below average
subb A, Current_Average_Temp
jz temp_average_updated_load_acc ; Equal - no change
mov A, Current_Average_Temp ; Above - increment average
jnc temp_average_inc
jz temp_average_updated ; Below - decrement average if average is not already zero
temp_average_dec:
dec A ; Decrement average
jmp temp_average_updated
temp_average_inc:
inc A ; Increment average
jz temp_average_dec
jmp temp_average_updated
temp_average_updated_load_acc:
mov A, Current_Average_Temp
temp_average_updated:
mov Current_Average_Temp, A
clr C
subb A, #TEMP_LIMIT ; Is temperature below first limit?
jc temp_check_exit ; Yes - exit
mov Pwm_Limit, #192 ; No - limit pwm
clr C
subb A, #TEMP_LIMIT_STEP ; Is temperature below second limit
jc temp_check_exit ; Yes - exit
mov Pwm_Limit, #128 ; No - limit pwm
clr C
subb A, #TEMP_LIMIT_STEP ; Is temperature below third limit
jc temp_check_exit ; Yes - exit
mov Pwm_Limit, #64 ; No - limit pwm
clr C
subb A, #TEMP_LIMIT_STEP ; Is temperature below final limit
jc temp_check_exit ; Yes - exit
mov Pwm_Limit, #0 ; No - limit pwm
temp_check_exit:
Set_Adc_Ip_Volt ; Select adc input for next conversion
ret
check_voltage_start:
IF MODE == 0 ; Main
; Check if low voltage limiting is enabled
mov A, Temp8
clr C
subb A, #1 ; Is low voltage limit disabled?
jz check_voltage_good ; Yes - voltage declared good
mov A, #ADC_LIMIT_L ; Is low voltage limit zero (ESC does not support it)?
jz check_voltage_good ; Yes - voltage declared good
; Check if ADC is saturated
clr C
mov A, Temp1
subb A, #0FFh
mov A, Temp2
subb A, #03h
jnc check_voltage_good ; ADC saturated, can not make judgement
; Check voltage against limit
clr C
mov A, Temp1
subb A, Lipo_Adc_Limit_L
mov A, Temp2
subb A, Lipo_Adc_Limit_H
jnc check_voltage_good ; If voltage above limit - branch
; Decrease pwm limit
mov A, Pwm_Limit
jz check_voltage_lim ; If limit zero - branch
dec Pwm_Limit ; Decrement limit
jmp check_voltage_lim
check_voltage_good:
; Increase pwm limit
mov A, Pwm_Limit
cpl A
jz check_voltage_lim ; If limit max - branch
inc Pwm_Limit ; Increment limit
check_voltage_lim:
mov Temp1, Pwm_Limit ; Set limit
clr C
mov A, Current_Pwm
subb A, Temp1
jnc check_voltage_spoolup_lim ; If current pwm above limit - branch and limit
mov Temp1, Current_Pwm ; Set current pwm (no limiting)
check_voltage_spoolup_lim:
; Slow spoolup
clr C
mov A, Temp1
subb A, Pwm_Limit_Spoolup
jc check_voltage_exit ; If current pwm below limit - branch
mov Temp1, Pwm_Limit_Spoolup
mov A, Pwm_Limit_Spoolup ; Check if spoolup limit is max
cpl A
jz check_voltage_exit ; If max - branch
mov Pwm_Limit, Pwm_Limit_Spoolup ; Set pwm limit to spoolup limit during ramp (to avoid governor integral buildup)
check_voltage_exit:
mov Current_Pwm_Limited, Temp1
mov Current_Pwm_Lim_Dith, Temp1
ENDIF
IF MODE == 1 ; Tail
; Increase pwm limit
mov A, Pwm_Limit
cpl A
jz check_voltage_lim ; If limit max - branch
inc Pwm_Limit ; Increment limit
check_voltage_lim:
ENDIF
IF MODE == 2 ; Multi
; Increase pwm limit
mov A, Pwm_Limit
add A, #16
jnc ($+4) ; If not max - branch
mov A, #255
mov Pwm_Limit, A ; Increment limit
; Set current pwm limited if closed loop mode
mov Temp2, #Pgm_Gov_Mode ; Governor mode?
cjne @Temp2, #4, ($+5)
ajmp check_voltage_pwm_done ; No - branch
clr C
mov Temp1, Pwm_Limit ; Set limit
mov A, Current_Pwm
subb A, Temp1
jnc check_voltage_low_rpm ; If current pwm above limit - branch and limit
mov Temp1, Current_Pwm ; Set current pwm (no limiting)
check_voltage_low_rpm:
; Limit pwm for low rpms
clr C
mov A, Temp1 ; Check against limit
subb A, Pwm_Limit_By_Rpm
jc ($+4) ; If current pwm below limit - branch
mov Temp1, Pwm_Limit_By_Rpm ; Limit pwm
mov Current_Pwm_Limited, Temp1
mov Current_Pwm_Lim_Dith, Temp1
check_voltage_pwm_done:
ENDIF
; Set adc mux for next conversion
mov A, Adc_Conversion_Cnt ; Is next conversion for temperature?
cjne A, #(TEMP_CHECK_RATE-1), check_voltage_ret
Set_Adc_Ip_Temp ; Select temp sensor for next conversion
check_voltage_ret:
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Set startup PWM routine
;
; Either the SETTLE_PHASE or the STEPPER_PHASE flag must be set
;
; Used for pwm control during startup
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
set_startup_pwm:
; Adjust startup power
mov A, #PWM_START ; Set power
mov Temp2, #Pgm_Startup_Pwr_Decoded
mov B, @Temp2
mul AB
xch A, B
mov C, B.7 ; Multiply result by 2 (unity gain is 128)
rlc A
mov Temp1, A ; Transfer to Temp1
clr C
mov A, Temp1 ; Check against limit
subb A, Pwm_Limit
jc startup_pwm_set_pwm ; If pwm below limit - branch
mov Temp1, Pwm_Limit ; Limit pwm
startup_pwm_set_pwm:
; Set pwm variables
mov Requested_Pwm, Temp1 ; Update requested pwm
mov Current_Pwm, Temp1 ; Update current pwm
mov Current_Pwm_Limited, Temp1 ; Update limited version of current pwm
mov Current_Pwm_Lim_Dith, Temp1
mov Pwm_Spoolup_Beg, Temp1 ; Yes - update spoolup beginning pwm (will use PWM_SETTLE or PWM_SETTLE/2)
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Initialize timing routine
;
; No assumptions
;
; Part of initialization before motor start
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
initialize_timing:
mov Comm_Period4x_L, #00h ; Set commutation period registers
mov Comm_Period4x_H, #0F0h
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Calculate next commutation timing routine
;
; No assumptions
;
; Called immediately after each commutation
; Also sets up timer 3 to wait advance timing
; Two entry points are used
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
calc_next_comm_timing: ; Entry point for run phase
; Read commutation time
clr EA
mov TMR2CN, #20h ; Timer2 disabled
mov Temp1, TMR2L ; Load timer value
mov Temp2, TMR2H
mov Temp3, Timer2_X
jnb TF2H, ($+4) ; Check if interrupt is pending
inc Temp3 ; If it is pending, then timer has already wrapped
mov TMR2CN, #24h ; Timer2 enabled
setb EA
IF MCU_48MHZ == 1
clr C
mov A, Temp3
rrc A
mov Temp3, A
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
ENDIF
; Calculate this commutation time
mov Temp4, Prev_Comm_L
mov Temp5, Prev_Comm_H
mov Prev_Comm_L, Temp1 ; Store timestamp as previous commutation
mov Prev_Comm_H, Temp2
clr C
mov A, Temp1
subb A, Temp4 ; Calculate the new commutation time
mov Temp1, A
mov A, Temp2
subb A, Temp5
jb Flags1.STARTUP_PHASE, calc_next_comm_startup
IF MCU_48MHZ == 1
anl A, #7Fh
ENDIF
mov Temp2, A
jnb Flags0.HIGH_RPM, ($+5) ; Branch if high rpm
ajmp calc_next_comm_timing_fast
ajmp calc_next_comm_normal
calc_next_comm_startup:
mov Temp6, Prev_Comm_X
mov Prev_Comm_X, Temp3 ; Store extended timestamp as previous commutation
mov Temp2, A
mov A, Temp3
subb A, Temp6 ; Calculate the new extended commutation time
IF MCU_48MHZ == 1
anl A, #7Fh
ENDIF
mov Temp3, A
jz calc_next_comm_startup_no_X
mov Temp1, #0FFh
mov Temp2, #0FFh
ajmp calc_next_comm_startup_average
calc_next_comm_startup_no_X:
mov Temp7, Prev_Prev_Comm_L
mov Temp8, Prev_Prev_Comm_H
mov Prev_Prev_Comm_L, Temp4
mov Prev_Prev_Comm_H, Temp5
mov Temp1, Prev_Comm_L ; Reload this commutation time
mov Temp2, Prev_Comm_H
clr C
mov A, Temp1
subb A, Temp7 ; Calculate the new commutation time based upon the two last commutations (to reduce sensitivity to offset)
mov Temp1, A
mov A, Temp2
subb A, Temp8
mov Temp2, A
calc_next_comm_startup_average:
clr C
mov A, Comm_Period4x_H ; Average with previous and save
rrc A
mov Temp4, A
mov A, Comm_Period4x_L
rrc A
mov Temp3, A
mov A, Temp1
add A, Temp3
mov Comm_Period4x_L, A
mov A, Temp2
addc A, Temp4
mov Comm_Period4x_H, A
jnc ($+8)
mov Comm_Period4x_L, #0FFh
mov Comm_Period4x_H, #0FFh
ajmp calc_new_wait_times_setup
calc_next_comm_normal:
; Calculate new commutation time
mov Temp3, Comm_Period4x_L ; Comm_Period4x(-l-h) holds the time of 4 commutations
mov Temp4, Comm_Period4x_H
mov Temp5, Comm_Period4x_L ; Copy variables
mov Temp6, Comm_Period4x_H
mov Temp7, #4 ; Divide Comm_Period4x 4 times as default
mov Temp8, #2 ; Divide new commutation time 2 times as default
clr C
mov A, Temp4
subb A, #04h
jc calc_next_comm_avg_period_div
dec Temp7 ; Reduce averaging time constant for low speeds
dec Temp8
clr C
mov A, Temp4
subb A, #08h
jc calc_next_comm_avg_period_div
jb Flags1.INITIAL_RUN_PHASE, calc_next_comm_avg_period_div ; Do not average very fast during initial run
dec Temp7 ; Reduce averaging time constant more for even lower speeds
dec Temp8
calc_next_comm_avg_period_div:
clr C
mov A, Temp6
rrc A ; Divide by 2
mov Temp6, A
mov A, Temp5
rrc A
mov Temp5, A
djnz Temp7, calc_next_comm_avg_period_div
clr C
mov A, Temp3
subb A, Temp5 ; Subtract a fraction
mov Temp3, A
mov A, Temp4
subb A, Temp6
mov Temp4, A
mov A, Temp8 ; Divide new time
jz calc_next_comm_new_period_div_done
calc_next_comm_new_period_div:
clr C
mov A, Temp2
rrc A ; Divide by 2
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
djnz Temp8, calc_next_comm_new_period_div
calc_next_comm_new_period_div_done:
mov A, Temp3
add A, Temp1 ; Add the divided new time
mov Temp3, A
mov A, Temp4
addc A, Temp2
mov Temp4, A
mov Comm_Period4x_L, Temp3 ; Store Comm_Period4x_X
mov Comm_Period4x_H, Temp4
jnc calc_new_wait_times_setup; If period larger than 0xffff - go to slow case
mov Temp4, #0FFh
mov Comm_Period4x_L, Temp4 ; Set commutation period registers to very slow timing (0xffff)
mov Comm_Period4x_H, Temp4
calc_new_wait_times_setup:
; Set high rpm bit (if above 156k erpm)
clr C
mov A, Temp4
subb A, #2
jnc ($+4)
setb Flags0.HIGH_RPM ; Set high rpm bit
; Load programmed commutation timing
jnb Flags1.STARTUP_PHASE, calc_new_wait_per_startup_done ; Set dedicated timing during startup
mov Temp8, #3
ajmp calc_new_wait_per_demag_done
calc_new_wait_per_startup_done:
mov Temp1, #Pgm_Comm_Timing ; Load timing setting
mov A, @Temp1
mov Temp8, A ; Store in Temp8
clr C
mov A, Demag_Detected_Metric ; Check demag metric
subb A, #130
jc calc_new_wait_per_demag_done
inc Temp8 ; Increase timing
clr C
mov A, Demag_Detected_Metric
subb A, #160
jc ($+3)
inc Temp8 ; Increase timing again
clr C
mov A, Temp8 ; Limit timing to max
subb A, #6
jc ($+4)
mov Temp8, #5 ; Set timing to max
calc_new_wait_per_demag_done:
mov Temp7, #2 ; Set timing reduction
; Load current commutation timing
mov A, Comm_Period4x_H ; Divide 4 times
swap A
anl A, #00Fh
mov Temp2, A
mov A, Comm_Period4x_H
swap A
anl A, #0F0h
mov Temp1, A
mov A, Comm_Period4x_L
swap A
anl A, #00Fh
add A, Temp1
mov Temp1, A
clr C
mov A, Temp1
subb A, Temp7
mov Temp3, A
mov A, Temp2
subb A, #0
mov Temp4, A
jc load_min_time ; Check that result is still positive
clr C
mov A, Temp3
subb A, #(COMM_TIME_MIN SHL 1)
mov A, Temp4
subb A, #0
jnc calc_new_wait_times_exit ; Check that result is still above minumum
load_min_time:
mov Temp3, #(COMM_TIME_MIN SHL 1)
clr A
mov Temp4, A
calc_new_wait_times_exit:
ajmp wait_advance_timing
; Fast calculation (Comm_Period4x_H less than 2)
calc_next_comm_timing_fast:
; Calculate new commutation time
mov Temp3, Comm_Period4x_L ; Comm_Period4x(-l-h) holds the time of 4 commutations
mov Temp4, Comm_Period4x_H
mov A, Temp4 ; Divide by 2 4 times
swap A
mov Temp7, A
mov A, Temp3
swap A
anl A, #0Fh
orl A, Temp7
mov Temp5, A
clr C
mov A, Temp3 ; Subtract a fraction
subb A, Temp5
mov Temp3, A
mov A, Temp4
subb A, #0
mov Temp4, A
clr C
mov A, Temp1
rrc A ; Divide by 2 2 times
clr C
rrc A
mov Temp1, A
mov A, Temp3 ; Add the divided new time
add A, Temp1
mov Temp3, A
mov A, Temp4
addc A, #0
mov Temp4, A
mov Comm_Period4x_L, Temp3 ; Store Comm_Period4x_X
mov Comm_Period4x_H, Temp4
clr C
mov A, Temp4 ; If erpm below 156k - go to normal case
subb A, #2
jc ($+4)
clr Flags0.HIGH_RPM ; Clear high rpm bit
mov Temp1, #2 ; Set timing reduction
mov A, Temp4 ; Divide by 2 4 times
swap A
mov Temp7, A
mov Temp4, #0
mov A, Temp3
swap A
anl A, #0Fh
orl A, Temp7
mov Temp3, A
clr C
mov A, Temp3
subb A, Temp1
mov Temp3, A
jc load_min_time_fast ; Check that result is still positive
clr C
subb A, #(COMM_TIME_MIN SHL 1)
jnc calc_new_wait_times_fast_done ; Check that result is still above minumum
load_min_time_fast:
mov Temp3, #(COMM_TIME_MIN SHL 1)
calc_new_wait_times_fast_done:
mov Temp1, #Pgm_Comm_Timing ; Load timing setting
mov A, @Temp1
mov Temp8, A ; Store in Temp8
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait advance timing routine
;
; No assumptions
; NOTE: Be VERY careful if using temp registers. They are passed over this routine
;
; Waits for the advance timing to elapse and sets up the next zero cross wait
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait_advance_timing:
jnb Flags0.T3_PENDING, ($+5)
ajmp wait_advance_timing
; Setup next wait time
mov TMR3RLL, Wt_ZC_Tout_Start_L
mov TMR3RLH, Wt_ZC_Tout_Start_H
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Calculate new wait times routine
;
; No assumptions
;
; Calculates new wait times
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
calc_new_wait_times:
clr C
clr A
subb A, Temp3 ; Negate
mov Temp1, A
clr A
subb A, Temp4
mov Temp2, A
IF MCU_48MHZ == 1
clr C
mov A, Temp1 ; Multiply by 2
rlc A
mov Temp1, A
mov A, Temp2
rlc A
mov Temp2, A
ENDIF
jnb Flags0.HIGH_RPM, ($+5) ; Branch if high rpm
ajmp calc_new_wait_times_fast
mov A, Temp1 ; Copy values
mov Temp3, A
mov A, Temp2
mov Temp4, A
setb C ; Negative numbers - set carry
mov A, Temp2
rrc A ; Divide by 2
mov Temp6, A
mov A, Temp1
rrc A
mov Temp5, A
mov Wt_Zc_Tout_Start_L, Temp1; Set 15deg time for zero cross scan timeout
mov Wt_Zc_Tout_Start_H, Temp2
clr C
mov A, Temp8 ; (Temp8 has Pgm_Comm_Timing)
subb A, #3 ; Is timing normal?
jz store_times_decrease ; Yes - branch
mov A, Temp8
jb ACC.0, adjust_timing_two_steps ; If an odd number - branch
mov A, Temp1 ; Add 7.5deg and store in Temp1/2
add A, Temp5
mov Temp1, A
mov A, Temp2
addc A, Temp6
mov Temp2, A
mov A, Temp5 ; Store 7.5deg in Temp3/4
mov Temp3, A
mov A, Temp6
mov Temp4, A
jmp store_times_up_or_down
adjust_timing_two_steps:
mov A, Temp1 ; Add 15deg and store in Temp1/2
add A, Temp1
mov Temp1, A
mov A, Temp2
addc A, Temp2
mov Temp2, A
clr C
mov A, Temp1
add A, #(COMM_TIME_MIN SHL 1)
mov Temp1, A
mov A, Temp2
addc A, #0
mov Temp2, A
mov Temp3, #-(COMM_TIME_MIN SHL 1); Store minimum time in Temp3/4
mov Temp4, #0FFh
store_times_up_or_down:
clr C
mov A, Temp8
subb A, #3 ; Is timing higher than normal?
jc store_times_decrease ; No - branch
store_times_increase:
mov Wt_Comm_Start_L, Temp3 ; Now commutation time (~60deg) divided by 4 (~15deg nominal)
mov Wt_Comm_Start_H, Temp4
mov Wt_Adv_Start_L, Temp1 ; New commutation advance time (~15deg nominal)
mov Wt_Adv_Start_H, Temp2
mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg)
mov Wt_Zc_Scan_Start_H, Temp6
ajmp wait_before_zc_scan
store_times_decrease:
mov Wt_Comm_Start_L, Temp1 ; Now commutation time (~60deg) divided by 4 (~15deg nominal)
mov Wt_Comm_Start_H, Temp2
mov Wt_Adv_Start_L, Temp3 ; New commutation advance time (~15deg nominal)
mov Wt_Adv_Start_H, Temp4
mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg)
mov Wt_Zc_Scan_Start_H, Temp6
jnb Flags1.STARTUP_PHASE, store_times_exit
mov Wt_Comm_Start_L, #0F0h ; Set very short delays for all but advance time during startup, in order to widen zero cross capture range
mov Wt_Comm_Start_H, #0FFh
mov Wt_Zc_Scan_Start_L, #0F0h
mov Wt_Zc_Scan_Start_H, #0FFh
mov Wt_Zc_Tout_Start_L, #0F0h
mov Wt_Zc_Tout_Start_H, #0FFh
store_times_exit:
ajmp wait_before_zc_scan
calc_new_wait_times_fast:
mov A, Temp1 ; Copy values
mov Temp3, A
setb C ; Negative numbers - set carry
mov A, Temp1 ; Divide by 2
rrc A
mov Temp5, A
mov Wt_Zc_Tout_Start_L, Temp1; Set 15deg time for zero cross scan timeout
clr C
mov A, Temp8 ; (Temp8 has Pgm_Comm_Timing)
subb A, #3 ; Is timing normal?
jz store_times_decrease_fast; Yes - branch
mov A, Temp8
jb ACC.0, adjust_timing_two_steps_fast ; If an odd number - branch
mov A, Temp1 ; Add 7.5deg and store in Temp1
add A, Temp5
mov Temp1, A
mov A, Temp5 ; Store 7.5deg in Temp3
mov Temp3, A
ajmp store_times_up_or_down_fast
adjust_timing_two_steps_fast:
mov A, Temp1 ; Add 15deg and store in Temp1
add A, Temp1
add A, #(COMM_TIME_MIN SHL 1)
mov Temp1, A
mov Temp3, #-(COMM_TIME_MIN SHL 1) ; Store minimum time in Temp3
store_times_up_or_down_fast:
clr C
mov A, Temp8
subb A, #3 ; Is timing higher than normal?
jc store_times_decrease_fast; No - branch
store_times_increase_fast:
mov Wt_Comm_Start_L, Temp3 ; Now commutation time (~60deg) divided by 4 (~15deg nominal)
mov Wt_Adv_Start_L, Temp1 ; New commutation advance time (~15deg nominal)
mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg)
ajmp wait_before_zc_scan
store_times_decrease_fast:
mov Wt_Comm_Start_L, Temp1 ; Now commutation time (~60deg) divided by 4 (~15deg nominal)
mov Wt_Adv_Start_L, Temp3 ; New commutation advance time (~15deg nominal)
mov Wt_Zc_Scan_Start_L, Temp5 ; Use this value for zero cross scan delay (7.5deg)
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait before zero cross scan routine
;
; No assumptions
;
; Waits for the zero cross scan wait time to elapse
; Also sets up timer 3 for the zero cross scan timeout time
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait_before_zc_scan:
; Calculate random number
mov A, Random
clr C
rlc A
jnc wait_before_zc_scan_rand
xrl A, #06Bh ; Sequence length of 35, when initialized to 1
wait_before_zc_scan_rand:
mov Random, A
wait_before_zc_scan_wait:
jnb Flags0.T3_PENDING, ($+5)
ajmp wait_before_zc_scan_wait
mov Startup_Zc_Timeout_Cntd, #2
setup_zc_scan_timeout:
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
mov A, Flags1
anl A, #((1 SHL STARTUP_PHASE)+(1 SHL INITIAL_RUN_PHASE))
jz wait_before_zc_scan_exit
mov Temp1, Comm_Period4x_L ; Set long timeout when starting
mov Temp2, Comm_Period4x_H
clr C
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
IF MCU_48MHZ == 0
clr C
mov A, Temp2
rrc A
mov Temp2, A
mov A, Temp1
rrc A
mov Temp1, A
ENDIF
jnb Flags1.STARTUP_PHASE, setup_zc_scan_timeout_startup_done
mov A, Temp2
add A, #40h ; Increase timeout somewhat to avoid false wind up
mov Temp2, A
setup_zc_scan_timeout_startup_done:
clr EA
anl EIE1, #7Fh ; Disable timer3 interrupts
mov TMR3CN, #00h ; Timer3 disabled and interrupt flag cleared
clr C
clr A
subb A, Temp1 ; Set timeout
mov TMR3L, A
clr A
subb A, Temp2
mov TMR3H, A
mov TMR3CN, #04h ; Timer3 enabled and interrupt flag cleared
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
setb EA
wait_before_zc_scan_exit:
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait for comparator to go low/high routines
;
; No assumptions
;
; Waits for the zero cross scan wait time to elapse
; Then scans for comparator going low/high
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait_for_comp_out_low:
setb Flags0.DEMAG_DETECTED ; Set demag detected flag as default
mov Comparator_Read_Cnt, #0 ; Reset number of comparator reads
mov Bit_Access, #00h ; Desired comparator output
jnb Flags1.DIR_CHANGE_BRAKE, ($+6)
mov Bit_Access, #40h
jmp wait_for_comp_out_start
wait_for_comp_out_high:
setb Flags0.DEMAG_DETECTED ; Set demag detected flag as default
mov Comparator_Read_Cnt, #0 ; Reset number of comparator reads
mov Bit_Access, #40h ; Desired comparator output
jnb Flags1.DIR_CHANGE_BRAKE, ($+6)
mov Bit_Access, #00h
wait_for_comp_out_start:
; Set number of comparator readings
mov Temp1, #1 ; Number of OK readings required
mov Temp2, #1 ; Max number of readings required
jb Flags0.HIGH_RPM, comp_scale_samples ; Branch if high rpm
mov A, Flags1 ; Clear demag detected flag if start phases
anl A, #((1 SHL STARTUP_PHASE)+(1 SHL INITIAL_RUN_PHASE))
jz ($+4)
clr Flags0.DEMAG_DETECTED
mov Temp2, #20 ; Too low value (~<15) causes rough running at pwm harmonics. Too high a value (~>35) causes the RCT4215 630 to run rough on full throttle
mov A, Comm_Period4x_H ; Set number of readings higher for lower speeds
clr C
rrc A
jnz ($+3)
inc A
mov Temp1, A
clr C
subb A, #20
jc ($+4)
mov Temp1, #20
jnb Flags1.STARTUP_PHASE, comp_scale_samples
mov Temp1, #27 ; Set many samples during startup, approximately one pwm period
mov Temp2, #27
comp_scale_samples:
IF MCU_48MHZ == 1
clr C
mov A, Temp1
rlc A
mov Temp1, A
clr C
mov A, Temp2
rlc A
mov Temp2, A
ENDIF
comp_check_timeout:
jb Flags0.T3_PENDING, comp_check_timeout_not_timed_out ; Has zero cross scan timeout elapsed?
mov A, Comparator_Read_Cnt ; Check that comparator has been read
jz comp_check_timeout_not_timed_out ; If not read - branch
jnb Flags1.STARTUP_PHASE, comp_check_timeout_timeout_extended ; Extend timeout during startup
djnz Startup_Zc_Timeout_Cntd, comp_check_timeout_extend_timeout
comp_check_timeout_timeout_extended:
setb Flags1.COMP_TIMED_OUT
ajmp setup_comm_wait
comp_check_timeout_extend_timeout:
call setup_zc_scan_timeout
comp_check_timeout_not_timed_out:
inc Comparator_Read_Cnt ; Increment comparator read count
Read_Comp_Out ; Read comparator output
anl A, #40h
cjne A, Bit_Access, comp_read_wrong
ajmp comp_read_ok
comp_read_wrong:
jnb Flags1.STARTUP_PHASE, comp_read_wrong_not_startup
inc Temp1 ; Increment number of OK readings required
clr C
mov A, Temp1
subb A, Temp2 ; If above initial requirement - go back and restart
jc ($+3)
dec Temp1
ajmp comp_check_timeout ; Continue to look for good ones
comp_read_wrong_not_startup:
jb Flags0.DEMAG_DETECTED, comp_read_wrong_extend_timeout
inc Temp1 ; Increment number of OK readings required
clr C
mov A, Temp1
subb A, Temp2
jc ($+4)
ajmp wait_for_comp_out_start ; If above initial requirement - go back and restart
ajmp comp_check_timeout ; Otherwise - take another reading
comp_read_wrong_extend_timeout:
clr Flags0.DEMAG_DETECTED ; Clear demag detected flag
clr EA
anl EIE1, #7Fh ; Disable timer3 interrupts
mov TMR3CN, #00h ; Timer3 disabled and interrupt flag cleared
jnb Flags0.HIGH_RPM, comp_read_wrong_low_rpm ; Branch if not high rpm
mov TMR3L, #00h ; Set timeout to ~1ms
IF MCU_48MHZ == 1
mov TMR3H, #0F0h
ELSE
mov TMR3H, #0F8h
ENDIF
comp_read_wrong_timeout_set:
mov TMR3CN, #04h ; Timer3 enabled and interrupt flag cleared
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
setb EA
ajmp wait_for_comp_out_start ; If comparator output is not correct - go back and restart
comp_read_wrong_low_rpm:
mov A, Comm_Period4x_H ; Set timeout to ~4x comm period 4x value
mov Temp7, #0FFh ; Default to long
IF MCU_48MHZ == 1
clr C
rlc A
jc comp_read_wrong_load_timeout
ENDIF
clr C
rlc A
jc comp_read_wrong_load_timeout
clr C
rlc A
jc comp_read_wrong_load_timeout
mov Temp7, A
comp_read_wrong_load_timeout:
clr C
clr A
subb A, Temp7
mov TMR3L, #0
mov TMR3H, A
ajmp comp_read_wrong_timeout_set
comp_read_ok:
clr C
mov A, Startup_Cnt ; Force a timeout for the first commutation
subb A, #1
jnc ($+4)
ajmp wait_for_comp_out_start
jnb Flags0.DEMAG_DETECTED, ($+5) ; Do not accept correct comparator output if it is demag
ajmp wait_for_comp_out_start
djnz Temp1, comp_read_ok_jmp ; Decrement readings counter - repeat comparator reading if not zero
ajmp ($+4)
comp_read_ok_jmp:
ajmp comp_check_timeout
clr Flags1.COMP_TIMED_OUT
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Setup commutation timing routine
;
; No assumptions
;
; Sets up and starts wait from commutation to zero cross
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
setup_comm_wait:
clr EA
anl EIE1, #7Fh ; Disable timer3 interrupts
mov TMR3CN, #00h ; Timer3 disabled and interrupt flag cleared
mov TMR3L, Wt_Comm_Start_L
mov TMR3H, Wt_Comm_Start_H
mov TMR3CN, #04h ; Timer3 enabled and interrupt flag cleared
; Setup next wait time
mov TMR3RLL, Wt_Adv_Start_L
mov TMR3RLH, Wt_Adv_Start_H
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
setb EA ; Enable interrupts again
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Evaluate comparator integrity
;
; No assumptions
;
; Checks comparator signal behaviour versus expected behaviour
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
evaluate_comparator_integrity:
mov A, Flags1
anl A, #((1 SHL STARTUP_PHASE)+(1 SHL INITIAL_RUN_PHASE))
jz eval_comp_check_timeout
jb Flags1.INITIAL_RUN_PHASE, ($+5) ; Do not increment beyond startup phase
inc Startup_Cnt ; Increment counter
jmp eval_comp_exit
eval_comp_check_timeout:
jnb Flags1.COMP_TIMED_OUT, eval_comp_exit ; Has timeout elapsed?
jb Flags1.DIR_CHANGE_BRAKE, eval_comp_exit ; Do not exit run mode if it is braking
jb Flags0.DEMAG_DETECTED, eval_comp_exit ; Do not exit run mode if it is a demag situation
dec SP ; Routine exit without "ret" command
dec SP
ljmp run_to_wait_for_power_on_fail ; Yes - exit run mode
eval_comp_exit:
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Wait for commutation routine
;
; No assumptions
;
; Waits from zero cross to commutation
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
wait_for_comm:
; Update demag metric
mov Temp1, #0
jnb Flags0.DEMAG_DETECTED, ($+5)
mov Temp1, #1
mov A, Demag_Detected_Metric ; Sliding average of 8, 256 when demag and 0 when not. Limited to minimum 120
mov B, #7
mul AB ; Multiply by 7
mov Temp2, A
mov A, B ; Add new value for current demag status
add A, Temp1
mov B, A
mov A, Temp2
mov C, B.0 ; Divide by 8
rrc A
mov C, B.1
rrc A
mov C, B.2
rrc A
mov Demag_Detected_Metric, A
clr C
subb A, #120 ; Limit to minimum 120
jnc ($+5)
mov Demag_Detected_Metric, #120
clr C
mov A, Demag_Detected_Metric ; Check demag metric
subb A, Demag_Pwr_Off_Thresh
jc wait_for_comm_wait ; Cut power if many consecutive demags. This will help retain sync during hard accelerations
setb Flags0.DEMAG_CUT_POWER ; Set demag power cut flag
IF NFETON_DELAY NE 0
All_nFETs_off
ELSE
En_Off ; For EN/PWM style drivers
ENDIF
wait_for_comm_wait:
jnb Flags0.T3_PENDING, ($+5)
ajmp wait_for_comm_wait
; Setup next wait time
mov TMR3RLL, Wt_Zc_Scan_Start_L
mov TMR3RLH, Wt_Zc_Scan_Start_H
setb Flags0.T3_PENDING
orl EIE1, #80h ; Enable timer3 interrupts
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Commutation routines
;
; No assumptions
;
; Performs commutation switching
; Damped routines uses all pfets on when in pwm off to dampen the motor
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
; Comm phase 1 to comm phase 2
comm1comm2:
Set_RPM_Out
jb Flags3.PGM_DIR_REV, comm12_rev
clr EA ; Disable all interrupts
mov Comm_Phase, #2
BpFET_off ; Turn off pfet
ApFET_on ; Turn on pfet
jnb Flags0.PWM_ON, comm12_nfet_done ; Is pwm on?
CnFET_on ; Pwm on - turn on nfet
comm12_nfet_done:
setb EA
Set_Comp_Phase_B ; Set comparator phase
jmp comm_exit
comm12_rev:
clr EA ; Disable all interrupts
mov Comm_Phase, #2
BpFET_off ; Turn off pfet
CpFET_on ; Turn on pfet (reverse)
jnb Flags0.PWM_ON, comm12_nfet_done_rev ; Is pwm on?
AnFET_on ; Pwm on - turn on nfet
comm12_nfet_done_rev:
setb EA
Set_Comp_Phase_B ; Set comparator phase
jmp comm_exit
; Comm phase 2 to comm phase 3
comm2comm3:
Clear_RPM_Out
jnb Flags2.PGM_PWMOFF_DAMPED, comm23_nondamp
; Comm2Comm3 Damped
jb Flags3.PGM_DIR_REV, comm23_damp_rev
clr EA ; Disable all interrupts
mov Comm_Phase, #3
mov DPTR, #pwm_bfet_damped
mov DampingFET, #(1 SHL BpFET)
CnFET_off ; Turn off fets
CpFET_off
jnb Flags0.PWM_ON, comm23_nfet_off ; Is pwm on?
BnFET_on ; Pwm on - turn on nfet
ajmp comm23_fets_done
comm23_nfet_off:
BpFET_on ; Pwm off - switch damping fets
comm23_fets_done:
setb EA
Set_Comp_Phase_C ; Set comparator phase
ljmp comm_exit
; Comm2Comm3 Damped reverse
comm23_damp_rev:
clr EA ; Disable all interrupts
mov Comm_Phase, #3
mov DPTR, #pwm_bfet_damped
mov DampingFET, #(1 SHL BpFET)
AnFET_off ; Turn off fets (reverse)
ApFET_off
jnb Flags0.PWM_ON, comm23_nfet_off_rev ; Is pwm on?
BnFET_on ; Pwm on - turn on nfet
ajmp comm23_fets_done_rev
comm23_nfet_off_rev:
BpFET_on ; Pwm off - switch damping fets
comm23_fets_done_rev:
setb EA
Set_Comp_Phase_A ; Set comparator phase (reverse)
ljmp comm_exit
; Comm2Comm3 Non-damped
comm23_nondamp:
jb Flags3.PGM_DIR_REV, comm23_nondamp_rev
clr EA ; Disable all interrupts
mov Comm_Phase, #3
mov DPTR, #pwm_bfet
IF NFETON_DELAY == 0
mov DampingFET, #(1 SHL BpFET)
ENDIF
CnFET_off ; Turn off nfet
jnb Flags0.PWM_ON, comm23_nfet_done ; Is pwm on?
BnFET_on ; Yes - turn on nfet
comm23_nfet_done:
setb EA
Set_Comp_Phase_C ; Set comparator phase
ljmp comm_exit
; Comm2Comm3 Non-damped reverse
comm23_nondamp_rev:
clr EA ; Disable all interrupts
mov Comm_Phase, #3
mov DPTR, #pwm_bfet
IF NFETON_DELAY == 0
mov DampingFET, #(1 SHL BpFET)
ENDIF
AnFET_off ; Turn off nfet (reverse)
jnb Flags0.PWM_ON, comm23_nfet_done_rev ; Is pwm on?
BnFET_on ; Yes - turn on nfet
comm23_nfet_done_rev:
setb EA
Set_Comp_Phase_A ; Set comparator phase (reverse)
ljmp comm_exit
; Comm phase 3 to comm phase 4
comm3comm4:
Set_RPM_Out
jb Flags3.PGM_DIR_REV, comm34_rev
clr EA ; Disable all interrupts
mov Comm_Phase, #4
ApFET_off ; Turn off pfet
CpFET_on ; Turn on pfet
jnb Flags0.PWM_ON, comm34_nfet_done ; Is pwm on?
BnFET_on ; Pwm on - turn on nfet
comm34_nfet_done:
setb EA
Set_Comp_Phase_A ; Set comparator phase
jmp comm_exit
comm34_rev:
clr EA ; Disable all interrupts
mov Comm_Phase, #4
CpFET_off ; Turn off pfet (reverse)
ApFET_on ; Turn on pfet (reverse)
jnb Flags0.PWM_ON, comm34_nfet_done_rev ; Is pwm on?
BnFET_on ; Pwm on - turn on nfet
comm34_nfet_done_rev:
setb EA
Set_Comp_Phase_C ; Set comparator phase (reverse)
jmp comm_exit
; Comm phase 4 to comm phase 5
comm4comm5:
Clear_RPM_Out
jnb Flags2.PGM_PWMOFF_DAMPED, comm45_nondamp
; Comm4Comm5 Damped
jb Flags3.PGM_DIR_REV, comm45_damp_rev
clr EA ; Disable all interrupts
mov Comm_Phase, #5
mov DPTR, #pwm_afet_damped
mov DampingFET, #(1 SHL ApFET)
BnFET_off ; Turn off fets
BpFET_off
jnb Flags0.PWM_ON, comm45_nfet_off ; Is pwm on?
AnFET_on ; Pwm on - turn on nfet
ajmp comm45_fets_done
comm45_nfet_off:
ApFET_on ; Pwm off - switch damping fets
comm45_fets_done:
setb EA
Set_Comp_Phase_B ; Set comparator phase
ljmp comm_exit
; Comm4Comm5 Damped reverse
comm45_damp_rev:
clr EA ; Disable all interrupts
mov Comm_Phase, #5
mov DPTR, #pwm_cfet_damped ; (reverse)
mov DampingFET, #(1 SHL CpFET) ; (reverse)
BnFET_off ; Turn off fets
BpFET_off
jnb Flags0.PWM_ON, comm45_nfet_off_rev ; Is pwm on?
CnFET_on ; Pwm on - turn on nfet (reverse)
ajmp comm45_fets_done_rev
comm45_nfet_off_rev:
CpFET_on ; Pwm off - switch damping fets (reverse)
comm45_fets_done_rev:
setb EA
Set_Comp_Phase_B ; Set comparator phase
ljmp comm_exit
; Comm4Comm5 Non-damped
comm45_nondamp:
jb Flags3.PGM_DIR_REV, comm45_nondamp_rev
clr EA ; Disable all interrupts
mov Comm_Phase, #5
mov DPTR, #pwm_afet
IF NFETON_DELAY == 0
mov DampingFET, #(1 SHL ApFET)
ENDIF
BnFET_off ; Turn off nfet
jnb Flags0.PWM_ON, comm45_nfet_done ; Is pwm on?
AnFET_on ; Yes - turn on nfet
comm45_nfet_done:
setb EA
Set_Comp_Phase_B ; Set comparator phase
ljmp comm_exit
; Comm4Comm5 Non-damped reverse
comm45_nondamp_rev:
clr EA ; Disable all interrupts
mov Comm_Phase, #5
mov DPTR, #pwm_cfet ; (reverse)
IF NFETON_DELAY == 0
mov DampingFET, #(1 SHL CpFET)
ENDIF
BnFET_off ; Turn off nfet
jnb Flags0.PWM_ON, comm45_nfet_done ; Is pwm on?
CnFET_on ; Yes - turn on nfet (reverse)
setb EA
Set_Comp_Phase_B ; Set comparator phase
ljmp comm_exit
; Comm phase 5 to comm phase 6
comm5comm6:
Set_RPM_Out
jb Flags3.PGM_DIR_REV, comm56_rev
clr EA ; Disable all interrupts
mov Comm_Phase, #6
CpFET_off ; Turn off pfet
BpFET_on ; Turn on pfet
jnb Flags0.PWM_ON, comm56_nfet_done ; Is pwm on?
AnFET_on ; Pwm on - turn on nfet
comm56_nfet_done:
setb EA
Set_Comp_Phase_C ; Set comparator phase
jmp comm_exit
comm56_rev:
clr EA ; Disable all interrupts
mov Comm_Phase, #6
ApFET_off ; Turn off pfet (reverse)
BpFET_on ; Turn on pfet
jnb Flags0.PWM_ON, comm56_nfet_done_rev ; Is pwm on?
CnFET_on ; Pwm on - turn on nfet
comm56_nfet_done_rev:
setb EA
Set_Comp_Phase_A ; Set comparator phase (reverse)
jmp comm_exit
; Comm phase 6 to comm phase 1
comm6comm1:
Clear_RPM_Out
jnb Flags2.PGM_PWMOFF_DAMPED, comm61_nondamp
; Comm6Comm1 Damped
jb Flags3.PGM_DIR_REV, comm61_damp_rev
clr EA ; Disable all interrupts
mov Comm_Phase, #1
mov DPTR, #pwm_cfet_damped
mov DampingFET, #(1 SHL CpFET)
AnFET_off ; Turn off fets
ApFET_off
jnb Flags0.PWM_ON, comm61_nfet_off ; Is pwm on?
CnFET_on ; Pwm on - turn on nfet
ajmp comm61_fets_done
comm61_nfet_off:
CpFET_on ; Pwm off - switch damping fets
comm61_fets_done:
setb EA
Set_Comp_Phase_A ; Set comparator phase
ljmp comm_exit
; Comm6Comm1 Damped reverse
comm61_damp_rev:
clr EA ; Disable all interrupts
mov Comm_Phase, #1
mov DPTR, #pwm_afet_damped ; (reverse)
mov DampingFET, #(1 SHL ApFET) ; (reverse)
CnFET_off ; Turn off fets (reverse)
CpFET_off
jnb Flags0.PWM_ON, comm61_nfet_off_rev ; Is pwm on?
AnFET_on ; Pwm on - turn on nfet
jmp comm61_fets_done_rev
comm61_nfet_off_rev:
ApFET_on ; Pwm off - switch damping fets (reverse)
comm61_fets_done_rev:
setb EA
Set_Comp_Phase_C ; Set comparator phase (reverse)
jmp comm_exit
; Comm6Comm1 Non-damped
comm61_nondamp:
jb Flags3.PGM_DIR_REV, comm61_nondamp_rev
clr EA ; Disable all interrupts
mov Comm_Phase, #1
mov DPTR, #pwm_cfet
IF NFETON_DELAY == 0
mov DampingFET, #(1 SHL CpFET)
ENDIF
AnFET_off ; Turn off nfet
jnb Flags0.PWM_ON, comm61_nfet_done ; Is pwm on?
CnFET_on ; Yes - turn on nfet
comm61_nfet_done:
setb EA
Set_Comp_Phase_A ; Set comparator phase
jmp comm_exit
; Comm6Comm1 Non-damped reverse
comm61_nondamp_rev:
clr EA ; Disable all interrupts
mov Comm_Phase, #1
mov DPTR, #pwm_afet ; (reverse)
IF NFETON_DELAY == 0
mov DampingFET, #(1 SHL ApFET)
ENDIF
CnFET_off ; Turn off nfet (reverse)
jnb Flags0.PWM_ON, comm61_nfet_done_rev ; Is pwm on?
AnFET_on ; Yes - turn on nfet (reverse)
comm61_nfet_done_rev:
setb EA
Set_Comp_Phase_C ; Set comparator phase (reverse)
comm_exit:
clr Flags0.DEMAG_CUT_POWER ; Clear demag power cut flag
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Switch power off routine
;
; No assumptions
;
; Switches all fets off
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
switch_power_off:
mov DPTR, #pwm_nofet ; Set DPTR register to pwm_nofet
mov DampingFET, #0
All_nFETs_Off ; Turn off all nfets
All_pFETs_Off ; Turn off all pfets
clr Flags0.PWM_ON ; Set pwm cycle to pwm off
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Set default parameters
;
; No assumptions
;
; Sets default programming parameters
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
set_default_parameters:
IF MODE == 0 ; Main
mov Temp1, #Pgm_Gov_P_Gain
mov @Temp1, #DEFAULT_PGM_MAIN_P_GAIN
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_I_GAIN
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_GOVERNOR_MODE
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_LOW_VOLTAGE_LIM
inc Temp1
mov @Temp1, #0FFh ; Motor gain
inc Temp1
mov @Temp1, #0FFh ; Motor idle
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_STARTUP_PWR
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_PWM_FREQ
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_DIRECTION
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_RCP_PWM_POL
mov Temp1, #Pgm_Enable_TX_Program
mov @Temp1, #DEFAULT_PGM_ENABLE_TX_PROGRAM
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_REARM_START
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_GOV_SETUP_TARGET
inc Temp1
mov @Temp1, #0FFh ; Startup rpm
inc Temp1
mov @Temp1, #0FFh ; Startup accel
inc Temp1
mov @Temp1, #0FFh ; Voltage comp
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_COMM_TIMING
inc Temp1
mov @Temp1, #0FFh ; Damping force
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_GOVERNOR_RANGE
inc Temp1
mov @Temp1, #0FFh ; Startup method
inc Temp1
mov @Temp1, #DEFAULT_PGM_PPM_MIN_THROTTLE
inc Temp1
mov @Temp1, #DEFAULT_PGM_PPM_MAX_THROTTLE
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_BEEP_STRENGTH
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_BEACON_STRENGTH
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_BEACON_DELAY
inc Temp1
mov @Temp1, #0FFh ; Throttle rate
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_DEMAG_COMP
inc Temp1
mov @Temp1, #DEFAULT_PGM_BEC_VOLTAGE_HIGH
inc Temp1
mov @Temp1, #DEFAULT_PGM_PPM_CENTER_THROTTLE
inc Temp1
mov @Temp1, #DEFAULT_PGM_MAIN_SPOOLUP_TIME
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_TEMP_PROT
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_POWER_PROT
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_PWM_INPUT
inc Temp1
mov @Temp1, #0FFh ; Pwm dither
inc Temp1
mov @Temp1, #DEFAULT_PGM_BRAKE_ON_STOP
ENDIF
IF MODE == 1 ; Tail
mov Temp1, #Pgm_Gov_P_Gain
mov @Temp1, #0FFh
inc Temp1
mov @Temp1, #0FFh ; Governor I gain
inc Temp1
mov @Temp1, #0FFh ; Governor mode
inc Temp1
mov @Temp1, #0FFh ; Low voltage limit
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_GAIN
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_IDLE_SPEED
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_STARTUP_PWR
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_PWM_FREQ
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_DIRECTION
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_RCP_PWM_POL
mov Temp1, #Pgm_Enable_TX_Program
mov @Temp1, #DEFAULT_PGM_ENABLE_TX_PROGRAM
inc Temp1
mov @Temp1, #0FFh ; Main rearm start
inc Temp1
mov @Temp1, #0FFh ; Governor setup target
inc Temp1
mov @Temp1, #0FFh ; Startup rpm
inc Temp1
mov @Temp1, #0FFh ; Startup accel
inc Temp1
mov @Temp1, #0FFh ; Voltage comp
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_COMM_TIMING
inc Temp1
mov @Temp1, #0FFh ; Damping force
inc Temp1
mov @Temp1, #0FFh ; Governor range
inc Temp1
mov @Temp1, #0FFh ; Startup method
inc Temp1
mov @Temp1, #DEFAULT_PGM_PPM_MIN_THROTTLE
inc Temp1
mov @Temp1, #DEFAULT_PGM_PPM_MAX_THROTTLE
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_BEEP_STRENGTH
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_BEACON_STRENGTH
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_BEACON_DELAY
inc Temp1
mov @Temp1, #0FFh ; Throttle rate
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_DEMAG_COMP
inc Temp1
mov @Temp1, #DEFAULT_PGM_BEC_VOLTAGE_HIGH
inc Temp1
mov @Temp1, #DEFAULT_PGM_PPM_CENTER_THROTTLE
inc Temp1
mov @Temp1, #0FFh
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_TEMP_PROT
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_POWER_PROT
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_PWM_INPUT
inc Temp1
mov @Temp1, #DEFAULT_PGM_TAIL_PWM_DITHER
inc Temp1
mov @Temp1, #DEFAULT_PGM_BRAKE_ON_STOP
ENDIF
IF MODE == 2 ; Multi
mov Temp1, #Pgm_Gov_P_Gain
mov @Temp1, #DEFAULT_PGM_MULTI_P_GAIN
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_I_GAIN
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_GOVERNOR_MODE
inc Temp1
mov @Temp1, #0FFh ; Low voltage limit
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_GAIN
inc Temp1
mov @Temp1, #0FFh
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_STARTUP_PWR
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_PWM_FREQ
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_DIRECTION
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_RCP_PWM_POL
mov Temp1, #Pgm_Enable_TX_Program
mov @Temp1, #DEFAULT_PGM_ENABLE_TX_PROGRAM
inc Temp1
mov @Temp1, #0FFh ; Main rearm start
inc Temp1
mov @Temp1, #0FFh ; Governor setup target
inc Temp1
mov @Temp1, #0FFh ; Startup rpm
inc Temp1
mov @Temp1, #0FFh ; Startup accel
inc Temp1
mov @Temp1, #0FFh ; Voltage comp
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_COMM_TIMING
inc Temp1
mov @Temp1, #0FFh ; Damping force
inc Temp1
mov @Temp1, #0FFh ; Governor range
inc Temp1
mov @Temp1, #0FFh ; Startup method
inc Temp1
mov @Temp1, #DEFAULT_PGM_PPM_MIN_THROTTLE
inc Temp1
mov @Temp1, #DEFAULT_PGM_PPM_MAX_THROTTLE
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_BEEP_STRENGTH
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_BEACON_STRENGTH
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_BEACON_DELAY
inc Temp1
mov @Temp1, #0FFh ; Throttle rate
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_DEMAG_COMP
inc Temp1
mov @Temp1, #DEFAULT_PGM_BEC_VOLTAGE_HIGH
inc Temp1
mov @Temp1, #DEFAULT_PGM_PPM_CENTER_THROTTLE
inc Temp1
mov @Temp1, #0FFh
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_TEMP_PROT
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_POWER_PROT
inc Temp1
mov @Temp1, #DEFAULT_PGM_ENABLE_PWM_INPUT
inc Temp1
mov @Temp1, #DEFAULT_PGM_MULTI_PWM_DITHER
inc Temp1
mov @Temp1, #DEFAULT_PGM_BRAKE_ON_STOP
ENDIF
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Decode parameters
;
; No assumptions
;
; Decodes programming parameters
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
decode_parameters:
; Load programmed pwm frequency
mov Temp1, #Pgm_Pwm_Freq ; Load pwm freq
mov A, @Temp1
mov Temp8, A ; Store in Temp8
clr Flags2.PGM_PWMOFF_DAMPED
IF DAMPED_MODE_ENABLE == 1
cjne Temp8, #3, ($+5)
setb Flags2.PGM_PWMOFF_DAMPED
ENDIF
; Load programmed direction
mov Temp1, #Pgm_Direction
IF MODE >= 1 ; Tail or multi
mov A, @Temp1
clr C
subb A, #3
jz decode_params_dir_set
ENDIF
clr Flags3.PGM_DIR_REV
mov A, @Temp1
jnb ACC.1, ($+5)
setb Flags3.PGM_DIR_REV
decode_params_dir_set:
clr Flags3.PGM_RCP_PWM_POL
mov Temp1, #Pgm_Input_Pol
mov A, @Temp1
jnb ACC.1, ($+5)
setb Flags3.PGM_RCP_PWM_POL
clr C
mov A, Temp8
subb A, #2
jz decode_pwm_freq_low
mov CKCON, #01h ; Timer0 set for clk/4 (22kHz pwm)
setb Flags2.PGM_PWM_HIGH_FREQ
jmp decode_pwm_freq_end
decode_pwm_freq_low:
mov CKCON, #00h ; Timer0 set for clk/12 (8kHz pwm)
clr Flags2.PGM_PWM_HIGH_FREQ
decode_pwm_freq_end:
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Decode settings
;
; No assumptions
;
; Decodes various settings
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
decode_settings:
; Decode governor gains
mov Temp1, #Pgm_Gov_P_Gain ; Decode governor P gain
mov A, @Temp1
dec A
mov DPTR, #GOV_GAIN_TABLE
movc A, @A+DPTR
mov Temp1, #Pgm_Gov_P_Gain_Decoded
mov @Temp1, A
mov Temp1, #Pgm_Gov_I_Gain ; Decode governor I gain
mov A, @Temp1
dec A
mov DPTR, #GOV_GAIN_TABLE
movc A, @A+DPTR
mov Temp1, #Pgm_Gov_I_Gain_Decoded
mov @Temp1, A
; Decode startup power
mov Temp1, #Pgm_Startup_Pwr
mov A, @Temp1
dec A
mov DPTR, #STARTUP_POWER_TABLE
movc A, @A+DPTR
mov Temp1, #Pgm_Startup_Pwr_Decoded
mov @Temp1, A
IF MODE == 0 ; Main
; Decode spoolup time
mov Temp1, #Pgm_Main_Spoolup_Time
mov A, @Temp1
mov Temp1, A ; Store
jnz decode_main_spoolup_nonzero ; If not zero - branch
mov Main_Spoolup_Time_3x, #0
ajmp decode_main_spoolup_done
decode_main_spoolup_nonzero:
clr C
mov A, Temp1
subb A, #17 ; Limit to 17 max
jc ($+4)
mov Temp1, #17
mov A, Temp1
add A, Temp1
add A, Temp1 ; Now 3x
mov Main_Spoolup_Time_3x, A
add A, Main_Spoolup_Time_3x
add A, Main_Spoolup_Time_3x
add A, Temp1 ; Now 10x
mov Main_Spoolup_Time_10x, A
add A, Main_Spoolup_Time_3x
add A, Temp1
add A, Temp1 ; Now 15x
mov Main_Spoolup_Time_15x, A
decode_main_spoolup_done:
ENDIF
; Decode low rpm power slope
mov Temp1, #Pgm_Startup_Pwr
mov A, @Temp1
mov Low_Rpm_Pwr_Slope, A
clr C
subb A, #2
jnc ($+5)
mov Low_Rpm_Pwr_Slope, #2
; Decode demag compensation
mov Temp1, #Pgm_Demag_Comp
mov A, @Temp1
mov Demag_Pwr_Off_Thresh, #255 ; Set default
cjne A, #2, decode_demag_high
mov Demag_Pwr_Off_Thresh, #160 ; Settings for demag comp low
decode_demag_high:
cjne A, #3, decode_demag_done
mov Demag_Pwr_Off_Thresh, #130 ; Settings for demag comp high
decode_demag_done:
; Decode pwm dither
mov Temp1, #Pgm_Pwm_Dither
mov A, @Temp1
dec A
mov DPTR, #PWM_DITHER_TABLE
movc A, @A+DPTR
mov Pwm_Dither_Decoded, A
call switch_power_off ; Reset DPTR
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Set BEC voltage
;
; No assumptions
;
; Sets the BEC output voltage low or high
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
set_bec_voltage:
; Set bec voltage
IF HIGH_BEC_VOLTAGE == 1
Set_BEC_Lo ; Set default to low
mov Temp1, #Pgm_BEC_Voltage_High
mov A, @Temp1
jz set_bec_voltage_exit
Set_BEC_Hi ; Set to high
set_bec_voltage_exit:
ENDIF
IF HIGH_BEC_VOLTAGE == 2
Set_BEC_0 ; Set default to low
mov Temp1, #Pgm_BEC_Voltage_High
mov A, @Temp1
cjne A, #1, set_bec_voltage_2
Set_BEC_1 ; Set to level 1
set_bec_voltage_2:
cjne A, #2, set_bec_voltage_exit
Set_BEC_2 ; Set to level 2
set_bec_voltage_exit:
ENDIF
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Find throttle gain
;
; The difference between max and min throttle must be more than 520us (a Pgm_Ppm_xxx_Throttle difference of 130)
;
; Finds throttle gain from throttle calibration values
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
find_throttle_gain:
; Load programmed minimum and maximum throttle
mov Temp1, #Pgm_Ppm_Min_Throttle
mov A, @Temp1
mov Temp3, A
mov Temp1, #Pgm_Ppm_Max_Throttle
mov A, @Temp1
mov Temp4, A
mov Temp1, #Pgm_Direction ; Check if bidirectional operation
mov A, @Temp1
cjne A, #3, find_throttle_gain_check_full
clr C
mov A, Temp4
subb A, #14 ; Compensate for higher deadband in bidirectional
mov Temp4, A
find_throttle_gain_check_full:
; Check if full range is chosen
jnb Flags3.FULL_THROTTLE_RANGE, find_throttle_gain_calculate
mov Temp3, #0
mov Temp4, #255
find_throttle_gain_calculate:
; Calculate difference
clr C
mov A, Temp4
subb A, Temp3
mov Temp5, A
; Check that difference is minimum 130
clr C
subb A, #130
jnc ($+4)
mov Temp5, #130
; Find gain
mov Ppm_Throttle_Gain, #0
test_throttle_gain:
inc Ppm_Throttle_Gain
mov A, Temp5
mov B, Ppm_Throttle_Gain ; A has difference, B has gain
mul AB
clr C
mov A, B
subb A, #125
jc test_throttle_gain
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Average throttle
;
; Outputs result in Temp7
;
; Averages throttle calibration readings
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
average_throttle:
setb Flags3.FULL_THROTTLE_RANGE ; Set range to 1000-2020us
call find_throttle_gain ; Set throttle gain
call wait30ms
call wait30ms
mov Temp3, #0
mov Temp4, #0
mov Temp5, #16 ; Average 16 measurments
average_throttle_meas:
call wait3ms ; Wait for new RC pulse value
mov A, New_Rcp ; Get new RC pulse value
add A, Temp3
mov Temp3, A
mov A, #0
addc A, Temp4
mov Temp4, A
djnz Temp5, average_throttle_meas
mov Temp5, #4 ; Shift 4 times
average_throttle_div:
clr C
mov A, Temp4 ; Shift right
rrc A
mov Temp4, A
mov A, Temp3
rrc A
mov Temp3, A
djnz Temp5, average_throttle_div
mov Temp7, A ; Copy to Temp7
clr Flags3.FULL_THROTTLE_RANGE
call find_throttle_gain ; Set throttle gain
ret
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Main program start
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;**** **** **** **** **** **** **** **** **** **** **** **** ****
pgm_start:
; Initialize flash keys to invalid values
mov Flash_Key_1, #0
mov Flash_Key_2, #0
; Check flash lock byte
mov A, RSTSRC
jb ACC.6, ($+6) ; Check if flash access error was reset source
mov Bit_Access, #0 ; No - then this is the first try
inc Bit_Access
mov DPTR, #LOCK_BYTE_ADDRESS_16K ; First try is for 16k flash size
mov A, Bit_Access
dec A
jz lock_byte_test
mov DPTR, #LOCK_BYTE_ADDRESS_8K ; Second try is for 8k flash size
dec A
jz lock_byte_test
lock_byte_test:
movc A, @A+DPTR ; Read lock byte
inc A
jz lock_byte_ok ; If lock byte is 0xFF, then start code execution
IF ONE_S_CAPABLE == 0
mov RSTSRC, #16h ; Generate hardware reset and set missing clock and VDD monitor
ELSE
mov RSTSRC, #14h ; Generate hardware reset and disable VDD monitor
ENDIF
lock_byte_ok:
; Disable the WDT.
IF SIGNATURE_001 == 0f3h
anl PCA0MD, #NOT(40h) ; Clear watchdog enable bit
ENDIF
IF SIGNATURE_001 == 0f8h
mov WDTCN, #0DEh ; Disable watchdog
mov WDTCN, #0ADh
ENDIF
; Initialize stack
mov SP, #0c0h ; Stack = 64 upper bytes of RAM
; Initialize VDD monitor
orl VDM0CN, #080h ; Enable the VDD monitor
call wait1ms ; Wait at least 100us
IF ONE_S_CAPABLE == 0
mov RSTSRC, #06h ; Set missing clock and VDD monitor as a reset source if not 1S capable
ELSE
mov RSTSRC, #04h ; Do not set VDD monitor as a reset source for 1S ESCSs, in order to avoid resets due to it
ENDIF
; Set clock frequency
IF SIGNATURE_001 == 0f3h
orl OSCICN, #03h ; Set clock divider to 1 (not supported on 'f850)
ENDIF
IF SIGNATURE_001 == 0f8h
mov CLKSEL, #00h ; Set clock divider to 1 (not supported on 'f3xx)
ENDIF
mov A, OSCICL
add A, #02h ; 24.5MHz to 24MHz (~0.5-1% per step)
jb ACC.7, reset_cal_done ; Is carry (7bit) set? - branch
mov Bit_Access_Int, A
IF SIGNATURE_002 <> 010h
mov A, OSCLCN
ELSE
mov A, OSCXCN
ENDIF
jb ACC.0, reset_cal_done ; Set if cal aleady done
mov OSCICL, Bit_Access_Int
IF SIGNATURE_002 <> 010h
orl OSCLCN, #01h ; Tag that cal is done
ELSE
orl OSCXCN, #01h ; Tag that cal is done
ENDIF
reset_cal_done:
; Switch power off
call switch_power_off
; Ports initialization
mov P0, #P0_INIT
mov P0MDOUT, #P0_PUSHPULL
mov P0MDIN, #P0_DIGITAL
mov P0SKIP, #P0_SKIP
mov P1, #P1_INIT
mov P1MDOUT, #P1_PUSHPULL
mov P1MDIN, #P1_DIGITAL
mov P1SKIP, #P1_SKIP
IF PORT3_EXIST == 1
mov P2, #P2_INIT
ENDIF
mov P2MDOUT, #P2_PUSHPULL
IF PORT3_EXIST == 1
mov P2MDIN, #P2_DIGITAL
mov P2SKIP, #P2_SKIP
mov P3, #P3_INIT
mov P3MDOUT, #P3_PUSHPULL
mov P3MDIN, #P3_DIGITAL
ENDIF
; Initialize the XBAR and related functionality
Initialize_Xbar
; Switch power off again, after initializing ports
call switch_power_off
; Clear RAM
clr A ; Clear accumulator
mov Temp1, A ; Clear Temp1
clear_ram:
mov @Temp1, A ; Clear RAM
djnz Temp1, clear_ram ; Is A not zero? - jump
; Initialize LFSR
mov Random, #1
; Set default programmed parameters
call set_default_parameters
; Read all programmed parameters
call read_all_eeprom_parameters
; Set beep strength
mov Temp1, #Pgm_Beep_Strength
mov Beep_Strength, @Temp1
; Set initial arm variable
mov Initial_Arm, #1
; Initializing beep
clr EA ; Disable interrupts explicitly
call wait200ms
call beep_f1
call wait30ms
call beep_f2
call wait30ms
call beep_f3
call wait30ms
IF MODE <= 1 ; Main or tail
; Wait for receiver to initialize
call wait1s
call wait200ms
call wait200ms
call wait100ms
ENDIF
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; No signal entry point
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
init_no_signal:
; Disable interrupts explicitly
clr EA
; Initialize flash keys to invalid values
mov Flash_Key_1, #0
mov Flash_Key_2, #0
; Check if input signal is high for more than 15ms
mov Temp1, #250
input_high_check_1:
mov Temp2, #250
input_high_check_2:
jnb RTX_PORT.RTX_PIN, bootloader_done ; Look for low
djnz Temp2, input_high_check_2
djnz Temp1, input_high_check_1
ljmp 1C00h ; Jump to bootloader
bootloader_done:
; Decode parameters
call decode_parameters
; Decode settings
call decode_settings
; Set BEC voltage
call set_bec_voltage
; Find throttle gain from stored min and max settings
call find_throttle_gain
; Set beep strength
mov Temp1, #Pgm_Beep_Strength
mov Beep_Strength, @Temp1
; Switch power off
call switch_power_off
; Set clock frequency
IF MCU_48MHZ == 1
Set_MCU_Clk_24MHz
ENDIF
; Timer control
mov TCON, #10h ; Timer0 enabled
; Timer mode
mov TMOD, #02h ; Timer0 as 8bit
; Timer2: clk/12 for 128us and 32ms interrupts
mov TMR2CN, #24h ; Timer2 enabled, low counter interrups enabled
; Timer3: clk/12 for commutation timing
mov TMR3CN, #04h ; Timer3 enabled
; PCA
mov PCA0CN, #40h ; PCA enabled
; Enable interrupts
mov IE, #22h ; Enable timer0 and timer2 interrupts
mov IP, #02h ; High priority to timer0 interrupts
mov EIE1, #90h ; Enable timer3 and PCA0 interrupts
; Initialize comparator
mov CPT0CN, #80h ; Comparator enabled, no hysteresis
mov CPT0MD, #00h ; Comparator response time 100ns
IF COMP1_USED == 1
mov CPT1CN, #80h ; Comparator enabled, no hysteresis
mov CPT1MD, #00h ; Comparator response time 100ns
ENDIF
; Initialize ADC
Initialize_Adc ; Initialize ADC operation
call wait1ms
setb EA ; Enable all interrupts
; Measure number of lipo cells
call Measure_Lipo_Cells ; Measure number of lipo cells
; Reset stall count
mov Stall_Cnt, #0
; Initialize RC pulse
Rcp_Int_First ; Enable interrupt and set to first edge
Rcp_Int_Enable ; Enable interrupt
Rcp_Clear_Int_Flag ; Clear interrupt flag
clr Flags2.RCP_EDGE_NO ; Set first edge flag
call wait200ms
; Measure PWM frequency
measure_pwm_freq_init:
setb Flags0.RCP_MEAS_PWM_FREQ ; Set measure pwm frequency flag
mov Temp4, #3 ; Number of attempts before going back to detect input signal
measure_pwm_freq_start:
mov Temp3, #12 ; Number of pulses to measure
measure_pwm_freq_loop:
; Check if period diff was accepted
mov A, Rcp_Period_Diff_Accepted
jnz measure_pwm_freq_wait
mov Temp3, #12 ; Reset number of pulses to measure
djnz Temp4, ($+5) ; If it is not zero - proceed
ljmp init_no_signal ; Go back to detect input signal
measure_pwm_freq_wait:
call wait30ms ; Wait 30ms for new pulse
jb Flags2.RCP_UPDATED, ($+6) ; Is there an updated RC pulse available - proceed
ljmp init_no_signal ; Go back to detect input signal
clr Flags2.RCP_UPDATED ; Flag that pulse has been evaluated
mov A, New_Rcp ; Load value
clr C
subb A, #RCP_VALIDATE ; Higher than validate level?
jc measure_pwm_freq_start ; No - start over
mov A, Flags3 ; Check pwm frequency flags
anl A, #((1 SHL RCP_PWM_FREQ_1KHZ)+(1 SHL RCP_PWM_FREQ_2KHZ)+(1 SHL RCP_PWM_FREQ_4KHZ)+(1 SHL RCP_PWM_FREQ_8KHZ)+(1 SHL RCP_PWM_FREQ_12KHZ))
mov Prev_Rcp_Pwm_Freq, Curr_Rcp_Pwm_Freq ; Store as previous flags for next pulse
mov Curr_Rcp_Pwm_Freq, A ; Store current flags for next pulse
cjne A, Prev_Rcp_Pwm_Freq, measure_pwm_freq_start ; Go back if new flags not same as previous
djnz Temp3, measure_pwm_freq_loop ; Go back if not required number of pulses seen
; Clear measure pwm frequency flag
clr Flags0.RCP_MEAS_PWM_FREQ
; Set up RC pulse interrupts after pwm frequency measurement
Rcp_Int_First ; Enable interrupt and set to first edge
Rcp_Clear_Int_Flag ; Clear interrupt flag
clr Flags2.RCP_EDGE_NO ; Set first edge flag
mov Temp1, #Pgm_Enable_PWM_Input ; Check if PWM input is enabled
mov A, @Temp1
jnz test_for_oneshot ; If it is - proceed
setb Flags2.RCP_PPM ; Set PPM flag
mov A, Flags3 ; Clear pwm frequency flags
anl A, #NOT((1 SHL RCP_PWM_FREQ_1KHZ)+(1 SHL RCP_PWM_FREQ_2KHZ)+(1 SHL RCP_PWM_FREQ_4KHZ)+(1 SHL RCP_PWM_FREQ_8KHZ)+(1 SHL RCP_PWM_FREQ_12KHZ))
mov Flags3, A
test_for_oneshot:
; Test whether signal is OneShot125
clr Flags2.RCP_PPM_ONESHOT125 ; Clear OneShot125 flag
mov Rcp_Outside_Range_Cnt, #0 ; Reset out of range counter
call wait100ms ; Wait for new RC pulse
jnb Flags2.RCP_PPM, validate_rcp_start ; If flag is not set (PWM) - branch
clr C
mov A, Rcp_Outside_Range_Cnt ; Check how many pulses were outside normal PPM range (800-2160us)
subb A, #10
jc validate_rcp_start
setb Flags2.RCP_PPM_ONESHOT125 ; Set OneShot125 flag
; Validate RC pulse
validate_rcp_start:
call wait3ms ; Wait for next pulse (NB: Uses Temp1/2!)
mov Temp1, #RCP_VALIDATE ; Set validate level as default
jnb Flags2.RCP_PPM, ($+5) ; If flag is not set (PWM) - branch
mov Temp1, #0 ; Set level to zero for PPM (any level will be accepted)
clr C
mov A, New_Rcp ; Load value
subb A, Temp1 ; Higher than validate level?
jc validate_rcp_start ; No - start over
; Beep arm sequence start signal
clr EA ; Disable all interrupts
call beep_f1 ; Signal that RC pulse is ready
call beep_f1
call beep_f1
setb EA ; Enable all interrupts
call wait200ms
; Arming sequence start
mov Gov_Arm_Target, #0 ; Clear governor arm target
arming_start:
IF MODE >= 1 ; Tail or multi
mov Temp1, #Pgm_Direction ; Check if bidirectional operation
mov A, @Temp1
cjne A, #3, ($+5)
ajmp program_by_tx_checked ; Disable tx programming if bidirectional operation
ENDIF
call wait3ms
mov Temp1, #Pgm_Enable_TX_Program; Start programming mode entry if enabled
mov A, @Temp1
clr C
subb A, #1 ; Is TX programming enabled?
jnc arming_initial_arm_check ; Yes - proceed
jmp program_by_tx_checked ; No - branch
arming_initial_arm_check:
mov A, Initial_Arm ; Yes - check if it is initial arm sequence
clr C
subb A, #1 ; Is it the initial arm sequence?
jnc arming_ppm_check ; Yes - proceed
jmp program_by_tx_checked ; No - branch
arming_ppm_check:
; Initialize flash keys to valid values
mov Flash_Key_1, #0A5h
mov Flash_Key_2, #0F1h
jb Flags2.RCP_PPM, throttle_high_cal_start ; If flag is set (PPM) - branch
; PWM tx program entry
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, #RCP_MAX ; Is RC pulse max?
jnc program_by_tx_entry_pwm ; Yes - proceed
jmp program_by_tx_checked ; No - branch
program_by_tx_entry_pwm:
clr EA ; Disable all interrupts
call beep_f4
setb EA ; Enable all interrupts
call wait100ms
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, #RCP_STOP ; Below stop?
jnc program_by_tx_entry_pwm ; No - start over
program_by_tx_entry_wait_pwm:
clr EA ; Disable all interrupts
call beep_f1
call wait10ms
call beep_f1
setb EA ; Enable all interrupts
call wait100ms
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, #RCP_MAX ; At or above max?
jc program_by_tx_entry_wait_pwm ; No - start over
jmp program_by_tx ; Yes - enter programming mode
; PPM throttle calibration and tx program entry
throttle_high_cal_start:
IF MODE <= 1 ; Main or tail
mov Temp8, #5 ; Set 3 seconds wait time
ELSE
mov Temp8, #2 ; Set 1 seconds wait time
ENDIF
throttle_high_cal:
setb Flags3.FULL_THROTTLE_RANGE ; Set range to 1000-2020us
call find_throttle_gain ; Set throttle gain
call wait100ms ; Wait for new throttle value
clr EA ; Disable interrupts (freeze New_Rcp value)
clr Flags3.FULL_THROTTLE_RANGE ; Set programmed range
call find_throttle_gain ; Set throttle gain
mov Temp7, New_Rcp ; Store new RC pulse value
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, #(RCP_MAX/2) ; Is RC pulse above midstick?
setb EA ; Enable interrupts
jnc ($+4)
ajmp arm_target_updated ; No - branch
call wait1ms
clr EA ; Disable all interrupts
call beep_f4
setb EA ; Enable all interrupts
djnz Temp8, throttle_high_cal ; Continue to wait
call average_throttle
clr C
mov A, Temp7
IF MODE <= 1 ; Main or tail
subb A, #5 ; Subtract about 2% and ensure that it is 250 or lower
ENDIF
mov Temp1, #Pgm_Ppm_Max_Throttle ; Store
mov @Temp1, A
call wait200ms
call success_beep
throttle_low_cal_start:
mov Temp8, #10 ; Set 3 seconds wait time
throttle_low_cal:
setb Flags3.FULL_THROTTLE_RANGE ; Set range to 1000-2020us
call find_throttle_gain ; Set throttle gain
call wait100ms
clr EA ; Disable interrupts (freeze New_Rcp value)
clr Flags3.FULL_THROTTLE_RANGE ; Set programmed range
call find_throttle_gain ; Set throttle gain
mov Temp7, New_Rcp ; Store new RC pulse value
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, #(RCP_MAX/2) ; Below midstick?
setb EA ; Enable interrupts
jnc throttle_low_cal_start ; No - start over
call wait1ms
clr EA ; Disable all interrupts
call beep_f1
call wait10ms
call beep_f1
setb EA ; Enable all interrupts
djnz Temp8, throttle_low_cal ; Continue to wait
call average_throttle
mov A, Temp7
add A, #3 ; Add about 1%
mov Temp1, #Pgm_Ppm_Min_Throttle ; Store
mov @Temp1, A
mov Temp1, A ; Min throttle in Temp1
mov Temp2, #Pgm_Ppm_Max_Throttle
mov A, @Temp2
clr C
subb A, #130 ; Subtract 130 (520us) from max throttle
jc program_by_tx_entry_limit
subb A, Temp1 ; Subtract min from max
jnc program_by_tx_entry_store
program_by_tx_entry_limit:
mov A, Temp1 ; Load min
add A, #130 ; Make max 520us higher than min
mov Temp1, #Pgm_Ppm_Max_Throttle ; Store new max
mov @Temp1, A
program_by_tx_entry_store:
call wait200ms
call erase_and_store_all_in_eeprom
call success_beep_inverted
program_by_tx_entry_wait_ppm:
call wait100ms
call find_throttle_gain ; Set throttle gain
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, #RCP_MAX ; At or above max?
jnc ($+4)
ajmp arming_ppm_check ; No - go back
jmp program_by_tx ; Yes - enter programming mode
program_by_tx_checked:
; Initialize flash keys to invalid values
mov Flash_Key_1, #0
mov Flash_Key_2, #0
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, Gov_Arm_Target ; Is RC pulse larger than arm target?
jc arm_target_updated ; No - do not update
mov Gov_Arm_Target, New_Rcp ; Yes - update arm target
arm_target_updated:
call wait100ms ; Wait for new throttle value
mov Temp1, #RCP_STOP ; Default stop value
mov Temp2, #Pgm_Direction ; Check if bidirectional operation
mov A, @Temp2
cjne A, #3, ($+5) ; No - branch
mov Temp1, #(RCP_STOP+4) ; Higher stop value for bidirectional
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, Temp1 ; Below stop?
jc arm_end_beep ; Yes - proceed
jmp arming_start ; No - start over
arm_end_beep:
; Beep arm sequence end signal
clr EA ; Disable all interrupts
call beep_f4 ; Signal that rcpulse is ready
call beep_f4
call beep_f4
setb EA ; Enable all interrupts
call wait200ms
; Clear initial arm variable
mov Initial_Arm, #0
; Armed and waiting for power on
wait_for_power_on:
clr A
mov Power_On_Wait_Cnt_L, A ; Clear wait counter
mov Power_On_Wait_Cnt_H, A
wait_for_power_on_loop:
inc Power_On_Wait_Cnt_L ; Increment low wait counter
mov A, Power_On_Wait_Cnt_L
cpl A
jnz wait_for_power_on_no_beep; Counter wrapping (about 3 sec)
inc Power_On_Wait_Cnt_H ; Increment high wait counter
mov Temp1, #Pgm_Beacon_Delay
mov A, @Temp1
mov Temp1, #25 ; Approximately 1 min
dec A
jz beep_delay_set
mov Temp1, #50 ; Approximately 2 min
dec A
jz beep_delay_set
mov Temp1, #125 ; Approximately 5 min
dec A
jz beep_delay_set
mov Temp1, #250 ; Approximately 10 min
dec A
jz beep_delay_set
mov Power_On_Wait_Cnt_H, #0 ; Reset counter for infinite delay
beep_delay_set:
clr C
mov A, Power_On_Wait_Cnt_H
subb A, Temp1 ; Check against chosen delay
jc wait_for_power_on_no_beep; Has delay elapsed?
call switch_power_off ; Switch power off in case braking is set
call wait1ms
dec Power_On_Wait_Cnt_H ; Decrement high wait counter
mov Power_On_Wait_Cnt_L, #0 ; Set low wait counter
mov Temp1, #Pgm_Beacon_Strength
mov Beep_Strength, @Temp1
clr EA ; Disable all interrupts
call beep_f4 ; Signal that there is no signal
setb EA ; Enable all interrupts
mov Temp1, #Pgm_Beep_Strength
mov Beep_Strength, @Temp1
call wait100ms ; Wait for new RC pulse to be measured
wait_for_power_on_no_beep:
call wait10ms
mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value
jnz wait_for_power_on_ppm_not_missing ; If it is not zero - proceed
jnb Flags2.RCP_PPM, wait_for_power_on_ppm_not_missing ; If flag is not set (PWM) - branch
jmp init_no_signal ; If ppm and pulses missing - go back to detect input signal
wait_for_power_on_ppm_not_missing:
mov Temp1, #RCP_STOP
jb Flags2.RCP_PPM, ($+5) ; If flag is set (PPM) - branch
mov Temp1, #(RCP_STOP+5) ; Higher than stop (for pwm)
clr C
mov A, New_Rcp ; Load new RC pulse value
subb A, Temp1 ; Higher than stop (plus some hysteresis)?
jc wait_for_power_on_loop ; No - start over
IF MODE >= 1 ; Tail or multi
mov Temp1, #Pgm_Direction ; Check if bidirectional operation
mov A, @Temp1
clr C
subb A, #3
jz wait_for_power_on_check_timeout ; Do not wait if bidirectional operation
ENDIF
lcall wait100ms ; Wait to see if start pulse was only a glitch
wait_for_power_on_check_timeout:
mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value
jnz ($+5) ; If it is not zero - proceed
ljmp init_no_signal ; If it is zero (pulses missing) - go back to detect input signal
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Start entry point
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
init_start:
clr EA
call switch_power_off
clr A
mov Requested_Pwm, A ; Set requested pwm to zero
mov Governor_Req_Pwm, A ; Set governor requested pwm to zero
mov Current_Pwm, A ; Set current pwm to zero
mov Current_Pwm_Limited, A ; Set limited current pwm to zero
mov Current_Pwm_Lim_Dith, A
mov Pwm_Dither_Excess_Power, A
setb EA
mov Temp1, #Pgm_Motor_Idle ; Set idle pwm to programmed value
mov A, @Temp1
clr C
rlc A
mov Pwm_Motor_Idle, A
clr A
mov Gov_Target_L, A ; Set target to zero
mov Gov_Target_H, A
mov Gov_Integral_L, A ; Set integral to zero
mov Gov_Integral_H, A
mov Gov_Integral_X, A
mov Adc_Conversion_Cnt, A
mov Flags0, A ; Clear flags0
mov Flags1, A ; Clear flags1
mov Demag_Detected_Metric, A ; Clear demag metric
;**** **** **** **** ****
; Motor start beginning
;**** **** **** **** ****
mov Adc_Conversion_Cnt, #TEMP_CHECK_RATE ; Make sure a temp reading is done
Set_Adc_Ip_Temp
call wait1ms
call start_adc_conversion
read_initial_temp:
jnb AD0INT, read_initial_temp
Read_Adc_Result ; Read initial temperature
mov A, Temp2
jnz ($+3) ; Is reading below 256?
mov Temp1, A ; Yes - set average temperature value to zero
mov Current_Average_Temp, Temp1 ; Set initial average temperature
call check_temp_voltage_and_limit_power
mov Adc_Conversion_Cnt, #TEMP_CHECK_RATE ; Make sure a temp reading is done next time
Set_Adc_Ip_Temp
; Set up start operating conditions
call decode_parameters ; (Decode_parameters uses Temp1 and Temp8)
; Set max allowed power
clr EA ; Disable interrupts to avoid that Requested_Pwm is overwritten
mov Pwm_Limit, #0FFh ; Set pwm limit to max
call set_startup_pwm
mov Pwm_Limit, Requested_Pwm
mov Pwm_Limit_Spoolup, Requested_Pwm
mov Pwm_Limit_By_Rpm, Requested_Pwm
setb EA
mov Requested_Pwm, #1 ; Set low pwm again after calling set_startup_pwm
mov Current_Pwm, #1
mov Current_Pwm_Limited, #1
mov Current_Pwm_Lim_Dith, #1
mov Spoolup_Limit_Cnt, Auto_Bailout_Armed
mov Spoolup_Limit_Skip, #1
; Begin startup sequence
IF MCU_48MHZ == 1
Set_MCU_Clk_48MHz
ENDIF
mov Temp1, #Pgm_Direction ; Check if bidirectional operation
mov A, @Temp1
cjne A, #3, init_start_bidir_done
clr Flags3.PGM_DIR_REV ; Set spinning direction. Default fwd
jnb Flags2.RCP_DIR_REV, ($+5) ; Check force direction
setb Flags3.PGM_DIR_REV ; Set spinning direction
init_start_bidir_done:
setb Flags1.MOTOR_SPINNING ; Set motor spinning flag
setb Flags1.STARTUP_PHASE ; Set startup phase flag
mov Startup_Cnt, #0 ; Reset counter
call comm5comm6 ; Initialize commutation
call comm6comm1
call initialize_timing ; Initialize timing
call calc_next_comm_timing ; Set virtual commutation point
call initialize_timing ; Initialize timing
call calc_next_comm_timing
call initialize_timing ; Initialize timing
;**** **** **** **** **** **** **** **** **** **** **** **** ****
;
; Run entry point
;
;**** **** **** **** **** **** **** **** **** **** **** **** ****
; Run 1 = B(p-on) + C(n-pwm) - comparator A evaluated
; Out_cA changes from low to high
run1:
call wait_for_comp_out_high ; Wait zero cross wait and wait for high
; setup_comm_wait ; Setup wait time from zero cross to commutation
; evaluate_comparator_integrity ; Check whether comparator reading has been normal
call calc_governor_target ; Calculate governor target
call wait_for_comm ; Wait from zero cross to commutation
call comm1comm2 ; Commutate
call calc_next_comm_timing ; Calculate next timing and start advance timing wait
; wait_advance_timing ; Wait advance timing and start zero cross wait
; calc_new_wait_times
; wait_before_zc_scan ; Wait zero cross wait and start zero cross timeout
; Run 2 = A(p-on) + C(n-pwm) - comparator B evaluated
; Out_cB changes from high to low
run2:
call wait_for_comp_out_low
; setup_comm_wait
; evaluate_comparator_integrity
jnb Flags1.GOV_ACTIVE, ($+6)
lcall calc_governor_prop_error
jb Flags0.HIGH_RPM, ($+6) ; Skip if high rpm
lcall set_pwm_limit_low_rpm
jnb Flags0.HIGH_RPM, ($+6) ; Do if high rpm
lcall set_pwm_limit_high_rpm
call wait_for_comm
call comm2comm3
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Run 3 = A(p-on) + B(n-pwm) - comparator C evaluated
; Out_cC changes from low to high
run3:
call wait_for_comp_out_high
; setup_comm_wait
; evaluate_comparator_integrity
jnb Flags1.GOV_ACTIVE, ($+6)
lcall calc_governor_int_error
call wait_for_comm
call comm3comm4
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Run 4 = C(p-on) + B(n-pwm) - comparator A evaluated
; Out_cA changes from high to low
run4:
call wait_for_comp_out_low
; setup_comm_wait
; evaluate_comparator_integrity
jnb Flags1.GOV_ACTIVE, ($+6)
lcall calc_governor_prop_correction
call wait_for_comm
call comm4comm5
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Run 5 = C(p-on) + A(n-pwm) - comparator B evaluated
; Out_cB changes from low to high
run5:
call wait_for_comp_out_high
; setup_comm_wait
; evaluate_comparator_integrity
jnb Flags1.GOV_ACTIVE, ($+6)
lcall calc_governor_int_correction
call wait_for_comm
call comm5comm6
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Run 6 = B(p-on) + A(n-pwm) - comparator C evaluated
; Out_cC changes from high to low
run6:
call start_adc_conversion
call wait_for_comp_out_low
; setup_comm_wait
; evaluate_comparator_integrity
call wait_for_comm
call comm6comm1
call check_temp_voltage_and_limit_power
call calc_next_comm_timing
; wait_advance_timing
; calc_new_wait_times
; wait_before_zc_scan
; Check if it is direct startup
jnb Flags1.STARTUP_PHASE, normal_run_checks
; Set spoolup power variables
mov Pwm_Limit, Pwm_Spoolup_Beg ; Set initial max power
mov Pwm_Limit_Spoolup, Pwm_Spoolup_Beg ; Set initial slow spoolup power
mov Spoolup_Limit_Cnt, Auto_Bailout_Armed
mov Spoolup_Limit_Skip, #1
; Check startup counter
mov Temp2, #24 ; Set nominal startup parameters
mov Temp3, #12
clr C
mov A, Startup_Cnt ; Load counter
subb A, Temp2 ; Is counter above requirement?
jc direct_start_check_rcp ; No - proceed
clr Flags1.STARTUP_PHASE ; Clear startup phase flag
setb Flags1.INITIAL_RUN_PHASE ; Set initial run phase flag
mov Initial_Run_Rot_Cntd, Temp3 ; Set initial run rotation count
IF MODE == 1 ; Tail
mov Pwm_Limit, #0FFh ; Allow full power
ENDIF
IF MODE == 2 ; Multi
mov Pwm_Limit, Pwm_Spoolup_Beg
mov Pwm_Limit_By_Rpm, Pwm_Spoolup_Beg
ENDIF
jmp normal_run_checks
direct_start_check_rcp:
clr C
mov A, New_Rcp ; Load new pulse value
subb A, #RCP_STOP ; Check if pulse is below stop value
jc ($+5)
ljmp run1 ; Continue to run
jmp run_to_wait_for_power_on
normal_run_checks:
; Check if it is initial run phase
jnb Flags1.INITIAL_RUN_PHASE, initial_run_phase_done ; If not initial run phase - branch
jb Flags1.DIR_CHANGE_BRAKE, initial_run_phase_done ; If a direction change - branch
; Decrement startup rotaton count
mov A, Initial_Run_Rot_Cntd
dec A
; Check number of initial rotations
jnz normal_run_check_startup_rot ; Branch if counter is not zero
clr Flags1.INITIAL_RUN_PHASE ; Clear initial run phase flag
setb Flags1.MOTOR_STARTED ; Set motor started
jmp run1 ; Continue with normal run
normal_run_check_startup_rot:
mov Initial_Run_Rot_Cntd, A ; Not zero - store counter
clr C
mov A, New_Rcp ; Load new pulse value
subb A, #RCP_STOP ; Check if pulse is below stop value
jc ($+5)
ljmp run1 ; Continue to run
mov Temp1, #Pgm_Direction ; Check if bidirectional operation
mov A, @Temp1
clr C
subb A, #3
jz initial_run_phase_done
jmp run_to_wait_for_power_on
initial_run_phase_done:
; Reset stall count
mov Stall_Cnt, #0
IF MODE == 0 ; Main
; Check if throttle is zeroed
clr C
mov A, Rcp_Stop_Cnt ; Load stop RC pulse counter value
subb A, #1 ; Is number of stop RC pulses above limit?
jc run6_check_rcp_stop_count ; If no - branch
mov Pwm_Limit_Spoolup, Pwm_Spoolup_Beg ; If yes - set initial max powers
mov Spoolup_Limit_Cnt, Auto_Bailout_Armed ; And set spoolup parameters
mov Spoolup_Limit_Skip, #1
run6_check_rcp_stop_count:
ENDIF
; Exit run loop after a given time
mov Temp1, #RCP_STOP_LIMIT
mov Temp2, #Pgm_Brake_On_Stop
mov A, @Temp2
jz ($+4)
mov Temp1, #3 ; About 100ms before stopping when brake is set
clr C
mov A, Rcp_Stop_Cnt ; Load stop RC pulse counter low byte value
subb A, Temp1 ; Is number of stop RC pulses above limit?
jnc run_to_wait_for_power_on ; Yes, go back to wait for poweron
jnb Flags2.RCP_PPM, run6_check_dir; If flag is not set (PWM) - branch
mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value
jz run_to_wait_for_power_on ; If it is zero - go back to wait for poweron
run6_check_dir:
IF MODE >= 1 ; Tail or multi
mov Temp1, #Pgm_Direction ; Check if bidirectional operation
mov A, @Temp1
cjne A, #3, run6_check_speed
jb Flags3.PGM_DIR_REV, run6_check_dir_rev ; Check if actual rotation direction
jb Flags2.RCP_DIR_REV, run6_check_dir_change ; Matches force direction
ajmp run6_check_speed
run6_check_dir_rev:
jnb Flags2.RCP_DIR_REV, run6_check_dir_change
ajmp run6_check_speed
run6_check_dir_change:
jb Flags1.DIR_CHANGE_BRAKE, run6_check_speed
setb Flags1.DIR_CHANGE_BRAKE ; Set brake flag
mov Pwm_Limit, Pwm_Spoolup_Beg ; Set max power while braking
jmp run4 ; Go back to run 4, thereby changing force direction
run6_check_speed:
ENDIF
mov Temp1, #0F0h ; Default minimum speed
jnb Flags1.DIR_CHANGE_BRAKE, run6_brake_done; Is it a direction change?
mov Pwm_Limit, Pwm_Spoolup_Beg ; Set max power while braking
mov Temp1, #20h ; Bidirectional braking termination speed
run6_brake_done:
clr C
mov A, Comm_Period4x_H ; Is Comm_Period4x more than 32ms (~1220 eRPM)?
subb A, Temp1
jnc ($+4) ; Yes - stop or turn direction
ajmp run1 ; No - go back to run 1
IF MODE >= 1 ; Tail or multi
jnb Flags1.DIR_CHANGE_BRAKE, run_to_wait_for_power_on ; If it is not a direction change - stop
clr Flags1.DIR_CHANGE_BRAKE ; Clear brake flag
clr Flags3.PGM_DIR_REV ; Set spinning direction. Default fwd
jnb Flags2.RCP_DIR_REV, ($+5) ; Check force direction
setb Flags3.PGM_DIR_REV ; Set spinning direction
setb Flags1.INITIAL_RUN_PHASE
mov Initial_Run_Rot_Cntd, #18
mov Pwm_Limit, Pwm_Spoolup_Beg ; Set initial max power
ajmp run1 ; Go back to run 1
ENDIF
run_to_wait_for_power_on_fail:
inc Stall_Cnt ; Increment stall count
mov A, New_Rcp ; Check if RCP is zero, then it is a normal stop
jz run_to_wait_for_power_on
ajmp run_to_wait_for_power_on_stall_done
run_to_wait_for_power_on:
mov Stall_Cnt, #0
run_to_wait_for_power_on_stall_done:
clr EA
call switch_power_off
mov Temp1, #Pgm_Pwm_Freq
mov A, @Temp1
mov Temp7, A ; Store setting in Temp7
mov @Temp1, #2 ; Set low pwm mode (in order to turn off damping)
call decode_parameters ; (Decode_parameters uses Temp1 and Temp8)
mov Temp1, #Pgm_Pwm_Freq
mov A, Temp7
mov @Temp1, A ; Restore settings
clr A
mov Requested_Pwm, A ; Set requested pwm to zero
mov Governor_Req_Pwm, A ; Set governor requested pwm to zero
mov Current_Pwm, A ; Set current pwm to zero
mov Current_Pwm_Limited, A ; Set limited current pwm to zero
mov Current_Pwm_Lim_Dith, A
mov Pwm_Motor_Idle, A ; Set motor idle to zero
mov Flags0, #0 ; Clear flags0
mov Flags1, #0 ; Clear flags1
IF MCU_48MHZ == 1
Set_MCU_Clk_24MHz
ENDIF
setb EA
call wait100ms ; Wait for pwm to be stopped
call switch_power_off
mov Temp1, #Pgm_Brake_On_Stop
mov A, @Temp1
jz run_to_wait_for_power_on_brake_done
Brake_FETs_on
run_to_wait_for_power_on_brake_done:
IF MODE == 0 ; Main
jnb Flags2.RCP_PPM, run_to_next_state_main ; If flag is not set (PWM) - branch
mov A, Rcp_Timeout_Cntd ; Load RC pulse timeout counter value
jnz run_to_next_state_main ; If it is not zero - branch
jmp init_no_signal ; If it is zero (pulses missing) - go back to detect input signal
run_to_next_state_main:
mov Temp1, #Pgm_Main_Rearm_Start
mov A, @Temp1
clr C
subb A, #1 ; Is re-armed start enabled?
jc jmp_wait_for_power_on ; No - do like tail and start immediately
jmp validate_rcp_start ; Yes - go back to validate RC pulse
jmp_wait_for_power_on:
jmp wait_for_power_on ; Go back to wait for power on
ENDIF
IF MODE >= 1 ; Tail or multi
jnb Flags2.RCP_PPM, jmp_wait_for_power_on ; If flag is not set (PWM) - branch
clr C
mov A, Stall_Cnt
subb A, #4
jc jmp_wait_for_power_on
jmp init_no_signal
jmp_wait_for_power_on:
jmp wait_for_power_on ; Go back to wait for power on
ENDIF
$include (BLHeliTxPgm.inc) ; Include source code for programming the ESC with the TX
$include (BLHeliBootLoad.inc) ; Include source code for bootloader
;**** **** **** **** **** **** **** **** **** **** **** **** ****
CSEG AT 19FDh
reset:
ljmp pgm_start
END